ITree.Extra.Secure.SecureStateHandlerPi

From Coq Require Import Morphisms.
From ITree Require Import
     Axioms
     ITree
     ITreeFacts
     Basics.HeterogeneousRelations
     Events.State
     Events.StateFacts.

From ITree.Extra Require Import
     Secure.SecureEqHalt
     Secure.SecureEqEuttHalt
     Secure.SecureEqWcompat
     Secure.SecureEqBind
     Secure.SecureEqProgInsens
     Secure.SecureEqProgInsensFacts
     Secure.StrongBisimProper
     Secure.SecureStateHandler
.

Import Monads.
Import MonadNotation.
Local Open Scope monad_scope.

From Paco Require Import paco.

Section GeneralStateHandler.

Context (S : Type).
Context (RS : S S Prop).
Context (RS_Eq: Equivalence RS).

Context (E1 E2 : Type Type).

Context (handler : E1 ~> stateT S (itree E2) ).

Context (Label : Preorder).
Context (priv1 : A, E1 A L).
Context (priv2 : A, E2 A L).
Context (l : L).

Definition state_pi_eqit_secure {R1 R2 : Type} (b1 b2 : bool) (RR : R1 R2 Prop)
           (m1 : stateT S (itree E2) R1) (m2 : stateT S (itree E2) R2) :=
   s1 s2, RS s1 s2 pi_eqit_secure Label priv2 (prod_rel RS RR) b1 b2 l (m1 s1) (m2 s2).

Definition top2 {R1 R2} (r1 : R1) (r2 : R2) : Prop := True.

Definition secure_in_nonempty_context {R} (m : stateT S (itree E2) R) :=
    r' : R, state_pi_eqit_secure true true top2 m (ret r').

Definition secure_in_empty_context {R} (m : stateT S (itree E2) R) :=
   state_pi_eqit_secure true true (@top2 R R) m (fun sITree.spin).

Lemma diverges_with_spin : E A P,
    diverges_with P (@ITree.spin E A).
Proof.
  intros. pcofix CIH. pfold. red. cbn. constructor.
  right; auto.
Qed.

Lemma pi_eqit_secure_silent_divergel : A B RR (t1 : itree E2 A) (t2 : itree E2 B),
    diverges_with (fun _ e¬ leq (priv2 _ e) l) t1
    pi_eqit_secure Label priv2 RR true true l t1 t2.
Proof.
  intros A B RR. pcofix CIH. intros.
  punfold H0. all : try apply mono_diverges_with. red in H0.
  inversion H0; use_simpobs; try rewrite H; try rewrite H3.
  - pfold. constructor; auto. right. pclearbot. eapply CIH; eauto.
  - destruct (classic_empty B0).
    + eapply paco2_mon with (r := bot2); intros; try contradiction.
      apply pi_eqit_secure_sym.
      apply pi_eqit_secure_private_halt; auto.
    + pfold. red. cbn. constructor; auto. right. pclearbot. eapply CIH; eauto.
      apply H1.
 Qed.

Lemma pi_eqit_secure_silent_diverger : A B RR (t1 : itree E2 A) (t2 : itree E2 B),
    diverges_with (fun _ e¬ leq (priv2 _ e) l) t2
    pi_eqit_secure Label priv2 RR true true l t1 t2.
Proof.
  intros. apply pi_eqit_secure_sym. apply pi_eqit_secure_silent_divergel; auto.
Qed.

Lemma silent_terminates_eqit_secure_ret : R (m : stateT S (itree E2) R), nonempty R
      ( s, terminates S RS E2 s (fun B e¬ leq (priv2 _ e) l nonempty B) (m s) ) r' : R, state_pi_eqit_secure true true top2 m (ret r').
Proof.
  red. intros. specialize (H0 s1).
  cbn. induction H0.
  - pfold; constructor. split; try constructor. cbn. etransitivity; eauto. symmetry. auto.
  - pfold; constructor; auto.
    left. eapply IHterminates; auto.
  - apply pi_eqit_secure_priv_visl; auto. destruct H3. auto.
Qed.

Variant handler_respects_priv (A : Type) (e : E1 A) : Prop :=
| respect_private' (SECCHECK : ¬ leq (priv1 _ e) l)
                 (RESCHECK : state_pi_eqit_secure true true top2 (handler A e) (ret tt) )
| respect_public'' (SECCHECK : leq (priv1 _ e) l)
                 (RESCHECK : state_pi_eqit_secure true true eq (handler A e) (handler A e))
.

Context (Hhandler : A (e : E1 A), handler_respects_priv A e).

Hint Resolve mono_diverges_with : paco.
(*
Lemma diverge_with_respectful_handler : forall (R : Type) (t : itree E1 R),
    diverges_with (fun _ e => ~ leq (priv1 _ e) l ) t ->
    forall s, diverges_with (fun _ e => ~ leq (priv2 _ e) l) (interp_state handler t s).
Proof.
  intro R. pcofix CIH. intros t Hdiv s. pinversion Hdiv; use_simpobs.
  - rewrite H. rewrite interp_state_tau. pfold. constructor. right. eapply CIH; eauto.
  - rewrite H. rewrite interp_state_vis.
    destruct (classic_empty B).
    + specialize (Hhandler _ e). destruct Hhandler; try contradiction; try contra_size.
      specialize (DIVCHECK s). eapply paco1_mon with (r:= bot1). eapply diverges_with_bind; eauto.
      intros; contradiction.
    + specialize (Hhandler _ e). destruct Hhandler; try contradiction; try contra_size.
      specialize (FINCHECK s). induction FINCHECK.
      * rewrite bind_ret_l. cbn. pfold. constructor. right. eapply CIH; eauto. apply H0.
      * rewrite bind_tau. pfold. constructor. left. eapply IHFINCHECK; eauto.
      * destruct H5. rewrite bind_vis. pfold. constructor; auto. left. eapply H4; eauto.
Qed.
*)

Lemma diverges_with_bind : E R S P (t : itree E R) (k : R itree E S),
    diverges_with P t diverges_with P (ITree.bind t k).
Proof.
  intros E R1 R2 P. pcofix CIH.
  intros t k Ht. punfold Ht. pfold. red.
  unfold observe. cbn. red in Ht. inv Ht.
  - cbn. constructor. right. pclearbot. eapply CIH; eauto.
  - pclearbot. cbn. constructor; auto. right. eapply CIH; eauto. apply H0.
Qed.

Lemma interp_pi_eqit_secure_state : (R1 R2 : Type) (RR : R1 R2 Prop) (t1 : itree E1 R1) (t2 : itree E1 R2),
    pi_eqit_secure Label priv1 RR true true l t1 t2
    state_pi_eqit_secure true true RR (interp_state handler t1) (interp_state handler t2).
Proof.
  intros R1 R2 RR. ginit. gcofix CIH. intros t1 t2 Ht s1 s2 Hs. punfold Ht.
  red in Ht.
  inv Ht; intros; use_simpobs.
  - rewrite H, H0. repeat rewrite interp_state_ret. gstep. constructor.
    split; auto.
  - rewrite H, H0. repeat rewrite interp_state_tau. gstep. constructor.
    gfinal. left. pclearbot. apply CIH; auto.
  - pclearbot. rewrite H. rewrite interp_state_tau. gstep. constructor; auto.
    gfinal. left. eapply CIH; eauto. apply simpobs in H0. rewrite <- itree_eta in H0.
    rewrite H0. auto.
  - pclearbot. rewrite H0. rewrite interp_state_tau. gstep. constructor; auto.
    gfinal. left. eapply CIH; eauto. apply simpobs in H. rewrite <- itree_eta in H.
    rewrite H. auto.
  - pclearbot. rewrite H, H0.
    repeat rewrite interp_state_vis.
    specialize (Hhandler A e). inv Hhandler; try contradiction.
    eapply pi_secure_eqit_bind'; eauto.
    intros. destruct H2; destruct r1; destruct r2; cbn in *; subst.
    pfold. constructor. right. eapply CIH; eauto. apply H1.
  - rewrite H, H0. pclearbot. rewrite interp_state_tau.
    gstep. constructor; auto. rewrite interp_state_vis.
    specialize (Hhandler A e). inv Hhandler; try contradiction.
    red in RESCHECK. apply RESCHECK in Hs as He.
    remember (handler A e s1) as t3. clear Heqt3.
    cbn in He. generalize dependent t3. gcofix CIH'.
    intros t3 Ht3. pinversion Ht3; use_simpobs; subst.
    + destruct H4. cbn in ×. destruct r1. cbn in ×.
      rewrite H2. rewrite bind_ret_l. gstep. constructor; auto.
      gfinal. left. eapply CIH'0. eapply CIH; eauto. cbn. apply H1.
    + rewrite H2. rewrite bind_tau. gstep; constructor; auto.
      gfinal. left. eapply CIH'; eauto. symmetry in H3. use_simpobs.
      rewrite <- H3. auto.
    + rewrite H2. rewrite bind_vis. gstep. constructor; auto.
      intros. gfinal. left. eapply CIH'; eauto. symmetry in H3.
      use_simpobs. rewrite <- H3. apply H4.
 - rewrite H, H0. pclearbot. rewrite interp_state_tau.
    gstep. constructor; auto. rewrite interp_state_vis.
    specialize (Hhandler A e). inv Hhandler; try contradiction.
    red in RESCHECK. symmetry in Hs. apply RESCHECK in Hs as He.
    remember (handler A e s2) as t3. clear Heqt3.
    cbn in He. generalize dependent t3. gcofix CIH'.
    intros t3 Ht3. pinversion Ht3; use_simpobs; subst.
    + destruct H4. cbn in ×. destruct r1. cbn in ×.
      rewrite H2. rewrite bind_ret_l. gstep. constructor; auto.
      gfinal. left. eapply CIH'0. eapply CIH; eauto. cbn. apply H1.
      symmetry. auto.
    + rewrite H2. rewrite bind_tau. gstep; constructor; auto.
      gfinal. left. eapply CIH'; eauto. symmetry in H3. use_simpobs.
      rewrite <- H3. auto.
    + rewrite H2. rewrite bind_vis. gstep. constructor; auto.
      intros. gfinal. left. eapply CIH'; eauto. symmetry in H3.
      use_simpobs. rewrite <- H3. apply H4.
 - pclearbot. rewrite H, H0. repeat rewrite interp_state_vis.
   specialize (Hhandler A e1) as He1. specialize (Hhandler B e2) as He2.
   inv He1; inv He2; try contradiction.
   eapply pi_secure_eqit_bind' with (RR := prod_rel RS top2); eauto.
   + intros [? ?] [? ?] [? ?]. cbn in ×. pstep. constructor.
     right. eapply CIH; eauto. apply H1.
   + cbn in ×. apply pi_eqit_secure_RR_imp with
                   (RR1 := rcompose (prod_rel RS (@top2 A unit)) (prod_rel RS top2) ).
     { intros. inv H2. destruct REL1. destruct REL2. split; auto.
       etransitivity; eauto. }
     eapply pi_eqit_secure_trans_ret; eauto.
     apply pi_eqit_secure_sym. apply pi_eqit_secure_RR_imp with
                                   (RR1 := prod_rel RS top2).
     { intros. inv H2. split; auto. symmetry. auto. }
     eapply RESCHECK0. reflexivity.
 - apply simpobs in H0. rewrite <- itree_eta in H0. rewrite H0.
   rewrite H. rewrite interp_state_vis.
   specialize (Hhandler A e). inv Hhandler; try contradiction.
   red in RESCHECK. apply RESCHECK in Hs as He.
    remember (handler A e s1) as t3. clear Heqt3.
    cbn in He. generalize dependent t3. gcofix CIH'.
    intros t3 Ht3. pinversion Ht3; use_simpobs; subst.
    + destruct H4. cbn in ×. destruct r1. cbn in ×.
      rewrite H2. rewrite bind_ret_l. gstep. constructor; auto.
      gfinal. left. eapply CIH; eauto. cbn. apply H1.
    + rewrite H2. rewrite bind_tau. gstep; constructor; auto.
      gfinal. left. eapply CIH'; eauto. symmetry in H3. use_simpobs.
      rewrite <- H3. auto.
    + rewrite H2. rewrite bind_vis. gstep. constructor; auto.
      intros. gfinal. left. eapply CIH'; eauto. symmetry in H3.
      use_simpobs. rewrite <- H3. apply H4.
 - apply simpobs in H. rewrite <- itree_eta in H. rewrite H.
   pclearbot. rewrite H0. rewrite interp_state_vis.
   specialize (Hhandler A e). inv Hhandler; try contradiction.
    red in RESCHECK. symmetry in Hs. apply RESCHECK in Hs as He.
    remember (handler A e s2) as t3. clear Heqt3.
    cbn in He. generalize dependent t3. gcofix CIH'.
    intros t3 Ht3. pinversion Ht3; use_simpobs; subst.
    + destruct H4. cbn in ×. destruct r1. cbn in ×.
      rewrite H2. rewrite bind_ret_l. gstep. constructor; auto.
      gfinal. left. cbn. eapply CIH; eauto. cbn. apply H1.
      symmetry. auto.
    + rewrite H2. rewrite bind_tau. gstep; constructor; auto.
      gfinal. left. eapply CIH'; eauto. symmetry in H3. use_simpobs.
      rewrite <- H3. auto.
    + rewrite H2. rewrite bind_vis. gstep. constructor; auto.
      intros. gfinal. left. eapply CIH'; eauto. symmetry in H3.
      use_simpobs. rewrite <- H3. apply H4.
Qed.

End GeneralStateHandler.