WandThe Magic Wand and Other Operators
Set Implicit Arguments.
From SLF Require Import LibSepReference.
From SLF Require Repr.
Close Scope trm_scope.
Implicit Types h : heap.
Implicit Types P : Prop.
Implicit Types H : hprop.
Implicit Types Q : val→hprop.
From SLF Require Import LibSepReference.
From SLF Require Repr.
Close Scope trm_scope.
Implicit Types h : heap.
Implicit Types P : Prop.
Implicit Types H : hprop.
Implicit Types Q : val→hprop.
First Pass
- the disjunction, written hor H1 H2,
- the non-separating conjunction, written hand H1 H2,
- the "forall", named hforall and written \∀ x, H,
- the "magic wand", named hwand and written H1 \−∗ H2,
- the "magic wand for postconditions", named qwand and written Q1 \−−∗ Q2.
- it is key to formulating the "ramified frame rule", a more practical rule for exploiting the frame and consequence properties,
- it will be used in the chapter WPgen to define a weakest-precondition generator, and
- it can be useful to state the specifications for certain data structures.
- definition and properties of hand, hor, and hforall,
- definition and properties of the magic wand operator,
- generalization of the magic wand to postconditions,
- extension of the xsimpl tactic to handle the magic wand,
- statement and benefits of the ramified frame rule.
The heap predicate \∀ x, H holds of a heap h that, for any possible
value of x, satisfies H. It may be puzzling at first what could possibly
be the use case for such a universal quantification, but we will see several
examples through this chapter -- in particular the encoding of the
non-separating conjunction (hand) and of the magic wand on postconditions
(qwand).
The predicate \∀ x, H stands for hforall (fun x ⇒ H), where the
definition of hforall follows the same pattern as hexists.
Definition hforall (A : Type) (J : A → hprop) : hprop :=
fun h ⇒ ∀ x, J x h.
Notation "'\forall' x1 .. xn , H" :=
(hforall (fun x1 ⇒ .. (hforall (fun xn ⇒ H)) ..))
(at level 39, x1 binder, H at level 50, right associativity,
format "'[' '\forall' '/ ' x1 .. xn , '/ ' H ']'").
fun h ⇒ ∀ x, J x h.
Notation "'\forall' x1 .. xn , H" :=
(hforall (fun x1 ⇒ .. (hforall (fun xn ⇒ H)) ..))
(at level 39, x1 binder, H at level 50, right associativity,
format "'[' '\forall' '/ ' x1 .. xn , '/ ' H ']'").
To follow the rest of this chapter, it suffices to have in mind the
introduction and elimination rules for hforall.
Lemma hforall_intro : ∀ A (J:A→hprop) h,
(∀ x, J x h) →
(hforall J) h.
Proof using. introv M. applys* M. Qed.
Lemma hforall_inv : ∀ A (J:A→hprop) h,
(hforall J) h →
∀ x, J x h.
Proof using. introv M. applys* M. Qed.
(∀ x, J x h) →
(hforall J) h.
Proof using. introv M. applys* M. Qed.
Lemma hforall_inv : ∀ A (J:A→hprop) h,
(hforall J) h →
∀ x, J x h.
Proof using. introv M. applys* M. Qed.
The introduction rule in an entailment for \∀ appears below. To
prove that a heap satisfies \∀ x, J x, we must show that, for any
x, this heap satisfies J x.
Lemma himpl_hforall_r : ∀ A (J:A→hprop) H,
(∀ x, H ==> J x) →
H ==> (\∀ x, J x).
Proof using. introv M. intros h K x. apply¬M. Qed.
(∀ x, H ==> J x) →
H ==> (\∀ x, J x).
Proof using. introv M. intros h K x. apply¬M. Qed.
The elimination rule in an entailment for \∀ appears below. Assuming
a heap satisfies \∀ x, J x, we can derive that the same heap
satisfies J v for any desired value v.
Lemma hforall_specialize : ∀ A (v:A) (J:A→hprop),
(\∀ x, J x) ==> (J v).
Proof using. intros. intros h K. apply* K. Qed.
(\∀ x, J x) ==> (J v).
Proof using. intros. intros h K. apply* K. Qed.
The lemma hforall_specialize can equivalently be formulated in the
following way, which makes it easier to apply in some cases.
Lemma himpl_hforall_l : ∀ A (v:A) (J:A→hprop) H,
J v ==> H →
(\∀ x, J x) ==> H.
Proof using. introv M. applys himpl_trans M. applys hforall_specialize. Qed.
J v ==> H →
(\∀ x, J x) ==> H.
Proof using. introv M. applys himpl_trans M. applys hforall_specialize. Qed.
Universal quantifers that appear in the precondition of a triple may be
specialized like universal quantifiers appearing on the left-hand side of an
entailment.
Lemma triple_hforall : ∀ A (v:A) t (J:A→hprop) Q,
triple t (J v) Q →
triple t (\∀ x, J x) Q.
Proof.
introv M. applys triple_conseq M.
{ applys hforall_specialize. }
{ applys qimpl_refl. }
Qed.
End Hforall.
triple t (J v) Q →
triple t (\∀ x, J x) Q.
Proof.
introv M. applys triple_conseq M.
{ applys hforall_specialize. }
{ applys qimpl_refl. }
Qed.
End Hforall.
The heap predicate hor H1 H2 describes a heap that satisfies H1 or
satifies H2 (or possibly both). In other words, the heap predicate
hor H1 H2 lifts the disjunction operator P1 ∨ P2 from Prop to
hprop.
The disjunction operator does not appear to be critically useful in
practice, because it can be encoded using Coq's conditional construct, or
using pattern matching. Nevertheless, there are situations where it proves
handy.
The heap disjunction predicate admits a direct definition as a function over
heaps, written hor'.
An alternative definition leverages the \∃ quantifier. The
definition, shown below, reads as follows: "there exists an unspecified
boolean value b such that if b is true then H1 holds, else if b is
false then H2 holds".
The benefit of this definition is that its properties can be established
without manipulating heaps explicitly.
Exercise: 3 stars, standard, optional (hor_eq_hor')
Prove the equivalence of the definitions hor and hor'.
Lemma himpl_hor_r_l : ∀ H1 H2,
H1 ==> hor H1 H2.
Proof using. intros. unfolds hor. ∃* true. Qed.
Lemma himpl_hor_r_r : ∀ H1 H2,
H2 ==> hor H1 H2.
Proof using. intros. unfolds hor. ∃* false. Qed.
H1 ==> hor H1 H2.
Proof using. intros. unfolds hor. ∃* true. Qed.
Lemma himpl_hor_r_r : ∀ H1 H2,
H2 ==> hor H1 H2.
Proof using. intros. unfolds hor. ∃* false. Qed.
In practice, these rules are easier to exploit when combined with a
transitivity step.
Lemma himpl_hor_r_l_trans : ∀ H1 H2 H3,
H3 ==> H1 →
H3 ==> hor H1 H2.
Proof using. introv W. applys himpl_trans W. applys himpl_hor_r_l. Qed.
Lemma himpl_hor_r_r_trans : ∀ H1 H2 H3,
H3 ==> H2 →
H3 ==> hor H1 H2.
Proof using. introv W. applys himpl_trans W. applys himpl_hor_r_r. Qed.
H3 ==> H1 →
H3 ==> hor H1 H2.
Proof using. introv W. applys himpl_trans W. applys himpl_hor_r_l. Qed.
Lemma himpl_hor_r_r_trans : ∀ H1 H2 H3,
H3 ==> H2 →
H3 ==> hor H1 H2.
Proof using. introv W. applys himpl_trans W. applys himpl_hor_r_r. Qed.
The elimination rule asserts that, if hor H1 H2 holds, then we can perform
a case analysis on whether it is H1 or H2 that holds. Concretely, to
show that hor H1 H2 entails a heap predicate H3, we must show both that
H1 entails H3 and that H2 entails H3.
Lemma himpl_hor_l : ∀ H1 H2 H3,
H1 ==> H3 →
H2 ==> H3 →
hor H1 H2 ==> H3.
Proof using.
introv M1 M2. unfolds hor. applys himpl_hexists_l. intros b. case_if*.
Qed.
H1 ==> H3 →
H2 ==> H3 →
hor H1 H2 ==> H3.
Proof using.
introv M1 M2. unfolds hor. applys himpl_hexists_l. intros b. case_if*.
Qed.
The operator hor is commutative. To establish this property, it is useful
to exploit the following lemma, called if_neg, for swapping the two
branches of a conditional by negating its boolean condition.
Lemma if_neg : ∀ (b:bool) A (X Y:A),
(if b then X else Y) = (if neg b then Y else X).
Proof using. intros. case_if*. Qed.
(if b then X else Y) = (if neg b then Y else X).
Proof using. intros. case_if*. Qed.
Exercise: 2 stars, standard, especially useful (hor_comm)
Prove that hor is a symmetric operator. Hint: exploit hprop_op_comm and if_neg (from chapter Himpl).Exercise: 4 stars, standard, especially useful (hor_comm)
Prove that the representation predicate MList introduced in chapter Repr can be equivalently characterized using the predicate hor, as shown below. Hint: to prove this equivalence, do not attempt a proof by induction, and do not attempt to unfold MList. Instead, work using the equalities MList_nil and MList_cons. You may want to begin the proof by applying himpl_antisym and calling destruct on L.
Lemma MList_using_hor : ∀ L p,
MList L p =
hor (\[L = nil ∧ p = null])
(\∃ x q L', \[L = x::L']
\* (p ~~~>`{ head := x; tail := q})
\* (MList L' q)).
Proof using. (* FILL IN HERE *) Admitted.
☐
MList L p =
hor (\[L = nil ∧ p = null])
(\∃ x q L', \[L = x::L']
\* (p ~~~>`{ head := x; tail := q})
\* (MList L' q)).
Proof using. (* FILL IN HERE *) Admitted.
☐
The heap predicate hand H1 H2 describes a single heap that satisfies H1
and at the same time satifies H2. In other words, the heap predicate
hand H1 H2 lifts the disjunction operator P1 ∧ P2 from Prop to
hprop. The heap predicate hand admits a direct definition as a function
over heaps.
An alternative definition leverages the \∀ quantifier. The definition
reads as follows: "for any boolean value b, if b is true then H1
should hold, and if b is false then H2 should hold".
Exercise: 2 stars, standard, especially useful (hand_eq_hand')
Prove the equivalence of the definitions hand and hand'. Use functional extensionality to get started.- If "H1 and H2" holds, then in particular H1 holds.
- Symmetrically, if "H1 and H2" holds, then in particular H2 holds.
- Reciprocally, to prove that a heap predicate H3 entails "H1 and H2", we must prove that H3 entails H1, and that H3 satisfies H2.
Lemma himpl_hand_l_r : ∀ H1 H2,
hand H1 H2 ==> H1.
Proof using. intros. unfolds hand. applys* himpl_hforall_l true. Qed.
Lemma himpl_hand_l_l : ∀ H1 H2,
hand H1 H2 ==> H2.
Proof using. intros. unfolds hand. applys* himpl_hforall_l false. Qed.
Lemma himpl_hand_r : ∀ H1 H2 H3,
H3 ==> H1 →
H3 ==> H2 →
H3 ==> hand H1 H2.
Proof using. introv M1 M2 Hh. intros b. case_if*. Qed.
hand H1 H2 ==> H1.
Proof using. intros. unfolds hand. applys* himpl_hforall_l true. Qed.
Lemma himpl_hand_l_l : ∀ H1 H2,
hand H1 H2 ==> H2.
Proof using. intros. unfolds hand. applys* himpl_hforall_l false. Qed.
Lemma himpl_hand_r : ∀ H1 H2 H3,
H3 ==> H1 →
H3 ==> H2 →
H3 ==> hand H1 H2.
Proof using. introv M1 M2 Hh. intros b. case_if*. Qed.
Exercise: 1 star, standard, especially useful (hand_comm)
Prove that hand is symmetric. Hint: use hprop_op_comm and rewrite if_neg, or a case analysis on the boolean value coming from hand.Definition of hwand
H1 \* (H1 \−∗ H2) ==> H2. Intuitively, if we think of the star H1 \* H2 as a sort of addition, H1 + H2, then we can think of H1 \−∗ H2 as the subtraction -H1 + H2. The entailment above intuitively captures the idea that (-H1 + H2) + H1 simplifies to H2.
The definition above is perfectly fine, however it is more practical to use
an alternative, equivalent definition of hwand, expressed in terms of
previously introduced Separation Logic operators. Doing so enables us to
establish all the properties of the magic wand by exploiting the tactic
xsimpl, thereby conducting all the reasoning at the level of hprop,
rather than having to work with concrete heaps.
The alternative definition asserts that H1 \−∗ H2 corresponds to some heap
predicate, called H0, such that H0 starred with H1 yields H2. In
other words, H0 is such that (H1 \* H0) ==> H2. In the definition below,
observe how H0 is existentially quantified.
Definition hwand (H1 H2:hprop) : hprop :=
\∃ H0, H0 \* \[ H1 \* H0 ==> H2 ].
Notation "H1 \−∗ H2" := (hwand H1 H2) (at level 43, right associativity).
\∃ H0, H0 \* \[ H1 \* H0 ==> H2 ].
Notation "H1 \−∗ H2" := (hwand H1 H2) (at level 43, right associativity).
Characteristic Equivalence for hwand
Lemma hwand_equiv : ∀ H0 H1 H2,
(H0 ==> H1 \−∗ H2) ↔ (H1 \* H0 ==> H2).
Proof using.
unfold hwand. iff M.
{ xchange M. intros H N. xchange N. }
{ xsimpl H0. xchange M. }
Qed.
(H0 ==> H1 \−∗ H2) ↔ (H1 \* H0 ==> H2).
Proof using.
unfold hwand. iff M.
{ xchange M. intros H N. xchange N. }
{ xsimpl H0. xchange M. }
Qed.
Indeed, we will see below that the magic wand operator is uniquely defined
by the equivalence (H0 ==> H1 \−∗ H2) ↔ (H1 \* H0 ==> H2). In other
words, any operator that satisfies the above equivalence is provably equal
to hwand.
The right-to-left direction of the equivalence is an introduction rule: it
tells what needs to be proved for constructing a magic wand H1 \−∗ H2 from
a state H0.
To establish that H0 entails H1 \−∗ H2, we have to show that the
conjunction of H0 and H1 yields H2.
Lemma himpl_hwand_r : ∀ H0 H1 H2,
(H1 \* H0) ==> H2 →
H0 ==> (H1 \−∗ H2).
Proof using. introv M. applys hwand_equiv. applys M. Qed.
(H1 \* H0) ==> H2 →
H0 ==> (H1 \−∗ H2).
Proof using. introv M. applys hwand_equiv. applys M. Qed.
The left-to-right direction of the equivalence is an elimination rule: it
tells what can be deduced from an entailment H0 ==> (H1 \−∗ H2) -- namely,
if H0 is starred with H1, then H2 can be recovered.
Lemma himpl_hwand_r_inv : ∀ H0 H1 H2,
H0 ==> (H1 \−∗ H2) →
(H1 \* H0) ==> H2.
Proof using. introv M. applys hwand_equiv. applys M. Qed.
H0 ==> (H1 \−∗ H2) →
(H1 \* H0) ==> H2.
Proof using. introv M. applys hwand_equiv. applys M. Qed.
This elimination rule can be equivalently reformulated in the following
handy form: H1 \−∗ H2, when starred with H1, yields H2.
Lemma hwand_cancel : ∀ H1 H2,
H1 \* (H1 \−∗ H2) ==> H2.
Proof using. intros. applys himpl_hwand_r_inv. applys himpl_refl. Qed.
Arguments hwand_cancel : clear implicits.
H1 \* (H1 \−∗ H2) ==> H2.
Proof using. intros. applys himpl_hwand_r_inv. applys himpl_refl. Qed.
Arguments hwand_cancel : clear implicits.
Further Properties of hwand
Lemma hwand_himpl : ∀ H1 H1' H2 H2',
H1' ==> H1 →
H2 ==> H2' →
(H1 \−∗ H2) ==> (H1' \−∗ H2').
Proof using.
introv M1 M2. applys himpl_hwand_r. xchange M1.
xchange (hwand_cancel H1 H2). applys M2.
Qed.
H1' ==> H1 →
H2 ==> H2' →
(H1 \−∗ H2) ==> (H1' \−∗ H2').
Proof using.
introv M1 M2. applys himpl_hwand_r. xchange M1.
xchange (hwand_cancel H1 H2). applys M2.
Qed.
The predicates H1 \−∗ H2 and H2 \−∗ H3 together simplify to H1 \−∗ H3.
This is reminiscent of the arithmetic identity
(-H1 + H2) + (-H2 + H3) = (-H1 + H3) (and to the transitivity of ordinary
implication).
Lemma hwand_trans_elim : ∀ H1 H2 H3,
(H1 \−∗ H2) \* (H2 \−∗ H3) ==> (H1 \−∗ H3).
Proof using.
intros. applys himpl_hwand_r. xchange (hwand_cancel H1 H2).
Qed.
(H1 \−∗ H2) \* (H2 \−∗ H3) ==> (H1 \−∗ H3).
Proof using.
intros. applys himpl_hwand_r. xchange (hwand_cancel H1 H2).
Qed.
The predicate H \−∗ H holds of the empty heap. Intuitively, we can rewrite
0 as -H + H.
Lemma himpl_hempty_hwand_same : ∀ H,
\[] ==> (H \−∗ H).
Proof using. intros. apply himpl_hwand_r. xsimpl. Qed.
\[] ==> (H \−∗ H).
Proof using. intros. apply himpl_hwand_r. xsimpl. Qed.
Let's now study the interaction of hwand with hempty and hpure.
The heap predicate \[] \−∗ H is equivalent to H. Intuitively, we can
rewrite -0+H as +H.
Lemma hwand_hempty_l : ∀ H,
(\[] \−∗ H) = H.
Proof using.
intros. unfold hwand. xsimpl.
{ intros H0 M. xchange M. }
{ xsimpl. }
Qed.
(\[] \−∗ H) = H.
Proof using.
intros. unfold hwand. xsimpl.
{ intros H0 M. xchange M. }
{ xsimpl. }
Qed.
The lemma above shows that \[] can be removed from the LHS of a magic
wand.
More generally, a pure predicate \[P] can be removed from the LHS of a
magic wand as long as P is true. Formally:
Exercise: 2 stars, standard, especially useful (hwand_hpure_l)
Lemma himpl_hwand_hpure_r : ∀ H1 H2 P,
(P → H1 ==> H2) →
H1 ==> (\[P] \−∗ H2).
Proof using. introv M. applys himpl_hwand_r. xsimpl. applys M. Qed.
(P → H1 ==> H2) →
H1 ==> (\[P] \−∗ H2).
Proof using. introv M. applys himpl_hwand_r. xsimpl. applys M. Qed.
Exercise: 2 stars, standard, optional (himpl_hwand_hpure_lr)
Prove that \[P1 → P2] entails \[P1] \−∗ \[P2]. Hint: use xpull, then use xsimpl by providing an explicit argument to indicate how the \∃ on the right-hand side of the entailment should be instantiated.
Lemma himpl_hwand_hpure_lr : ∀ (P1 P2:Prop),
\[P1 → P2] ==> (\[P1] \−∗ \[P2]).
Proof using. (* FILL IN HERE *) Admitted.
☐
\[P1 → P2] ==> (\[P1] \−∗ \[P2]).
Proof using. (* FILL IN HERE *) Admitted.
☐
Lemma hwand_curry_eq : ∀ H1 H2 H3,
(H1 \* H2) \−∗ H3 = H1 \−∗ (H2 \−∗ H3).
Proof using.
intros. applys himpl_antisym.
{ apply himpl_hwand_r. apply himpl_hwand_r.
xchange (hwand_cancel (H1 \* H2) H3). }
{ apply himpl_hwand_r. xchange (hwand_cancel H1 (H2 \−∗ H3)).
xchange (hwand_cancel H2 H3). }
Qed.
(H1 \* H2) \−∗ H3 = H1 \−∗ (H2 \−∗ H3).
Proof using.
intros. applys himpl_antisym.
{ apply himpl_hwand_r. apply himpl_hwand_r.
xchange (hwand_cancel (H1 \* H2) H3). }
{ apply himpl_hwand_r. xchange (hwand_cancel H1 (H2 \−∗ H3)).
xchange (hwand_cancel H2 H3). }
Qed.
Yet another interesting property is that the RHS of a magic wand can absorb
resources that the magic wand is starred with.
Concretely, from (H1 \−∗ H2) \* H3, we can get the predicate H3 to be
absorbed by the H2 in the magic wand, yielding H1 \−∗ (H2 \* H3). One
way to read this: "if you own H3 and, when given H1, you own H2, then,
when given H1, you own both H2 and H3."
Lemma hstar_hwand : ∀ H1 H2 H3,
(H1 \−∗ H2) \* H3 ==> H1 \−∗ (H2 \* H3).
Proof using.
intros. applys himpl_hwand_r. xsimpl. xchange (hwand_cancel H1 H2).
Qed.
(H1 \−∗ H2) \* H3 ==> H1 \−∗ (H2 \* H3).
Proof using.
intros. applys himpl_hwand_r. xsimpl. xchange (hwand_cancel H1 H2).
Qed.
The reciprocal entailment is false: H1 \−∗ (H2 \* H3) does not entail
(H1 \−∗ H2) \* H3.
To see why, instantiate H1 with \[False]. The predicate
\[False] \−∗ (H2 \* H3) is equivalent to True, hence imposes no
restriction on the heap. But, to establish (\[False] \−∗ H2) \* H3, we
would need to exhibit a piece of heap satisfiying H3.
Exercise: 1 star, standard, especially useful (himpl_hwand_hstar_same_r)
Prove that H1 entails H2 \−∗ (H2 \* H1).
Lemma himpl_hwand_hstar_same_r : ∀ H1 H2,
H1 ==> (H2 \−∗ (H2 \* H1)).
Proof using. (* FILL IN HERE *) Admitted.
☐
H1 ==> (H2 \−∗ (H2 \* H1)).
Proof using. (* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, standard, especially useful (hwand_cancel_part)
Prove that H1 \* ((H1 \* H2) \−∗ H3) simplifies to H2 \−∗ H3.
Lemma hwand_cancel_part : ∀ H1 H2 H3,
H1 \* ((H1 \* H2) \−∗ H3) ==> (H2 \−∗ H3).
Proof using. (* FILL IN HERE *) Admitted.
☐
H1 \* ((H1 \* H2) \−∗ H3) ==> (H2 \−∗ H3).
Proof using. (* FILL IN HERE *) Admitted.
☐
Exercise: 3 stars, standard, optional (hwand_frame)
Prove that H1 \−∗ H2 entails to (H1 \* H3) \−∗ (H2 \* H3). Hint: use xsimpl.
Lemma hwand_frame : ∀ H1 H2 H3,
H1 \−∗ H2 ==> (H1 \* H3) \−∗ (H2 \* H3).
Proof using. (* FILL IN HERE *) Admitted.
☐
H1 \−∗ H2 ==> (H1 \* H3) \−∗ (H2 \* H3).
Proof using. (* FILL IN HERE *) Admitted.
☐
Exercise: 3 stars, standard, optional (hwand_inv)
Prove the following inversion lemma for hwand. This lemma essentially captures the fact that hwand entails the alternative definition named hwand'.
Lemma hwand_inv : ∀ h1 h2 H1 H2,
(H1 \−∗ H2) h2 →
H1 h1 →
Fmap.disjoint h1 h2 →
H2 (h1 \u h2).
Proof using. (* FILL IN HERE *) Admitted.
☐
(H1 \−∗ H2) h2 →
H1 h1 →
Fmap.disjoint h1 h2 →
H2 (h1 \u h2).
Proof using. (* FILL IN HERE *) Admitted.
☐
In what follows, we generalize the magic wand to operate on postconditions,
introducing a heap predicate of the form Q1 \−−∗ Q2, of type hprop.
Note that the magic wand between two postconditions produces a heap
predicate, not a postcondition.
There are two ways to define the operator qwand. The first is to follow
the same pattern as for hwand, that is, to quantify some heap predicate
H0 such that H0 starred with Q1 yields Q2.
The second possibility is to define qwand directly on top of hwand, by
means of the hforall quantifier.
Definition qwand (Q1 Q2:val→hprop) : hprop :=
\∀ v, (Q1 v) \−∗ (Q2 v).
Notation "Q1 \−−∗ Q2" := (qwand Q1 Q2) (at level 43).
\∀ v, (Q1 v) \−∗ (Q2 v).
Notation "Q1 \−−∗ Q2" := (qwand Q1 Q2) (at level 43).
As we establish later in this chapter, qwand and qwand' both define the
same operator. We prefer taking qwand as the definition because in
practice instantiating the universal quantifier is the most useful way to
exploit a magic wand between postconditions. This specialization operation
is formalized next. This result is a direct consequence of the
specialization result for \∀.
Lemma qwand_specialize : ∀ (v:val) (Q1 Q2:val→hprop),
(Q1 \−−∗ Q2) ==> (Q1 v \−∗ Q2 v).
Proof using.
intros. unfold qwand. applys himpl_hforall_l v. xsimpl.
Qed.
(Q1 \−−∗ Q2) ==> (Q1 v \−∗ Q2 v).
Proof using.
intros. unfold qwand. applys himpl_hforall_l v. xsimpl.
Qed.
The predicate qwand satisfies numerous properties that are direct
counterparts of the properties on hwand. First, qwand satisfies a
characteristic equivalence rule.
Lemma qwand_equiv : ∀ H Q1 Q2,
H ==> (Q1 \−−∗ Q2)
↔ (Q1 \*+ H) ===> Q2.
Proof using.
intros. iff M.
{ intros x. xchange M. xchange (qwand_specialize x).
xchange (hwand_cancel (Q1 x)). }
{ applys himpl_hforall_r. intros x. applys himpl_hwand_r.
xchange (M x). }
Qed.
H ==> (Q1 \−−∗ Q2)
↔ (Q1 \*+ H) ===> Q2.
Proof using.
intros. iff M.
{ intros x. xchange M. xchange (qwand_specialize x).
xchange (hwand_cancel (Q1 x)). }
{ applys himpl_hforall_r. intros x. applys himpl_hwand_r.
xchange (M x). }
Qed.
Second, qwand satisfies a cancellation rule.
Lemma qwand_cancel : ∀ Q1 Q2,
Q1 \*+ (Q1 \−−∗ Q2) ===> Q2.
Proof using. intros. rewrite <- qwand_equiv. applys qimpl_refl. Qed.
Q1 \*+ (Q1 \−−∗ Q2) ===> Q2.
Proof using. intros. rewrite <- qwand_equiv. applys qimpl_refl. Qed.
Third, the operation Q1 \−−∗ Q2 is contravariant in Q1 and covariant in
Q2.
Lemma qwand_himpl : ∀ Q1 Q1' Q2 Q2',
Q1' ===> Q1 →
Q2 ===> Q2' →
(Q1 \−−∗ Q2) ==> (Q1' \−−∗ Q2').
Proof using.
introv M1 M2. rewrite qwand_equiv. intros x.
xchange (qwand_specialize x). xchange M1.
xchange (hwand_cancel (Q1 x)). xchange M2.
Qed.
Q1' ===> Q1 →
Q2 ===> Q2' →
(Q1 \−−∗ Q2) ==> (Q1' \−−∗ Q2').
Proof using.
introv M1 M2. rewrite qwand_equiv. intros x.
xchange (qwand_specialize x). xchange M1.
xchange (hwand_cancel (Q1 x)). xchange M2.
Qed.
Fourth the operation Q1 \−−∗ Q2 can absorb in its RHS resources to which
it is starred.
Lemma hstar_qwand : ∀ Q1 Q2 H,
(Q1 \−−∗ Q2) \* H ==> Q1 \−−∗ (Q2 \*+ H).
Proof using.
intros. rewrite qwand_equiv. xchange (@qwand_cancel Q1).
Qed.
(Q1 \−−∗ Q2) \* H ==> Q1 \−−∗ (Q2 \*+ H).
Proof using.
intros. rewrite qwand_equiv. xchange (@qwand_cancel Q1).
Qed.
Exercise: 1 star, standard, especially useful (himpl_qwand_hstar_same_r)
Prove that H entails Q \−−∗ (Q \*+ H).
Lemma himpl_qwand_hstar_same_r : ∀ H Q,
H ==> Q \−−∗ (Q \*+ H).
Proof using. (* FILL IN HERE *) Admitted.
☐
H ==> Q \−−∗ (Q \*+ H).
Proof using. (* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, standard, optional (qwand_cancel_part)
Prove that H \* ((Q1 \*+ H) \−−∗ Q2) simplifies to Q1 \−−∗ Q2. Hint: use xchange.
Lemma qwand_cancel_part : ∀ H Q1 Q2,
H \* ((Q1 \*+ H) \−−∗ Q2) ==> (Q1 \−−∗ Q2).
Proof using. (* FILL IN HERE *) Admitted.
☐
H \* ((Q1 \*+ H) \−−∗ Q2) ==> (Q1 \−−∗ Q2).
Proof using. (* FILL IN HERE *) Admitted.
☐
Simplifications of Magic Wands using xsimpl
xsimpl is able to spot a magic wand that cancels out. For example, if an
iterated separating conjunction includes both H2 \−∗ H3 and H2, then
these two heap predicates can be simplified into H3.
Lemma xsimpl_demo_hwand_cancel : ∀ H1 H2 H3 H4 H5,
H1 \* (H2 \−∗ H3) \* H4 \* H2 ==> H5.
Proof using. intros. xsimpl. Abort.
H1 \* (H2 \−∗ H3) \* H4 \* H2 ==> H5.
Proof using. intros. xsimpl. Abort.
xsimpl is able to simplify uncurried magic wands. For example, if an
iterated separating conjunction includes (H1 \* H2 \* H3) \−∗ H4 and H2,
the two predicates can be simplified into (H1 \* H3) \−∗ H4.
Lemma xsimpl_demo_hwand_cancel_partial : ∀ H1 H2 H3 H4 H5 H6,
((H1 \* H2 \* H3) \−∗ H4) \* H5 \* H2 ==> H6.
Proof using. intros. xsimpl. Abort.
((H1 \* H2 \* H3) \−∗ H4) \* H5 \* H2 ==> H6.
Proof using. intros. xsimpl. Abort.
xsimpl automatically applies the introduction rule himpl_hwand_r when
the right-hand-side, after prior simplification, reduces to just a magic
wand. In the example below, H1 is first cancelled out from both sides,
then H3 is moved from the RHS to the LHS.
Lemma xsimpl_demo_himpl_hwand_r : ∀ H1 H2 H3 H4 H5,
H1 \* H2 ==> H1 \* (H3 \−∗ (H4 \* H5)).
Proof using. intros. xsimpl. Abort.
H1 \* H2 ==> H1 \* (H3 \−∗ (H4 \* H5)).
Proof using. intros. xsimpl. Abort.
xsimpl can iterate a number of simplifications involving different magic
wands.
Lemma xsimpl_demo_hwand_iter : ∀ H1 H2 H3 H4 H5,
H4 \* H3 ==> H5 →
H2 \* (H1 \−∗ H3) \* H4 \* (H2 \−∗ H1) ==> H5.
Proof using. intros. xsimpl. auto. Qed.
H4 \* H3 ==> H5 →
H2 \* (H1 \−∗ H3) \* H4 \* (H2 \−∗ H1) ==> H5.
Proof using. intros. xsimpl. auto. Qed.
xsimpl can iterate simplifications on both sides.
Lemma xsimpl_demo_hwand_iter_2 : ∀ H1 H2 H3 H4 H5,
H1 \* H2 \* ((H1 \* H3) \−∗ (H4 \−∗ H5)) \* H4 ==> ((H2 \−∗ H3) \−∗ H5).
Proof using. intros. xsimpl. Qed.
H1 \* H2 \* ((H1 \* H3) \−∗ (H4 \−∗ H5)) \* H4 ==> ((H2 \−∗ H3) \−∗ H5).
Proof using. intros. xsimpl. Qed.
xsimpl is also able to deal with the magic wand for postconditions. In
particular, it is able to simplify the conjunction of Q1 \−−∗ Q2 and
Q1 v into Q2 v.
Lemma xsimpl_demo_qwand_cancel : ∀ v (Q1 Q2:val→hprop) H1 H2,
(Q1 \−−∗ Q2) \* H1 \* (Q1 v) ==> H2.
Proof using. intros. xsimpl. Abort.
(Q1 \−−∗ Q2) \* H1 \* (Q1 v) ==> H2.
Proof using. intros. xsimpl. Abort.
xsimpl is able to prove entailments whose right-hand side is a magic wand.
Lemma xsimpl_hwand_frame : ∀ H1 H2 H3,
(H1 \−∗ H2) ==> ((H1 \* H3) \−∗ (H2 \* H3)).
Proof using.
intros.
(* xsimpl's first step is to turn the goal into
(H1 \−∗ H2) \* (H1 \* H3) ==> (H2 \* H3). *)
xsimpl.
Qed.
End XsimplDemo.
(H1 \−∗ H2) ==> ((H1 \* H3) \−∗ (H2 \* H3)).
Proof using.
intros.
(* xsimpl's first step is to turn the goal into
(H1 \−∗ H2) \* (H1 \* H3) ==> (H2 \* H3). *)
xsimpl.
Qed.
End XsimplDemo.
The core operators are defined as functions over heaps.
Definition hempty : hprop :=
fun h ⇒ (h = Fmap.empty).
Definition hsingle (p:loc) (v:val) : hprop :=
fun h ⇒ (h = Fmap.single p v).
Definition hstar (H1 H2 : hprop) : hprop :=
fun h ⇒ ∃ h1 h2, H1 h1
∧ H2 h2
∧ Fmap.disjoint h1 h2
∧ h = Fmap.union h1 h2.
Definition hexists A (J:A→hprop) : hprop :=
fun h ⇒ ∃ x, J x h.
Definition hforall (A : Type) (J : A → hprop) : hprop :=
fun h ⇒ ∀ x, J x h.
fun h ⇒ (h = Fmap.empty).
Definition hsingle (p:loc) (v:val) : hprop :=
fun h ⇒ (h = Fmap.single p v).
Definition hstar (H1 H2 : hprop) : hprop :=
fun h ⇒ ∃ h1 h2, H1 h1
∧ H2 h2
∧ Fmap.disjoint h1 h2
∧ h = Fmap.union h1 h2.
Definition hexists A (J:A→hprop) : hprop :=
fun h ⇒ ∃ x, J x h.
Definition hforall (A : Type) (J : A → hprop) : hprop :=
fun h ⇒ ∀ x, J x h.
The remaining operators can be defined in terms of the core operators.
Module ReaminingOperatorsDerived.
Definition hpure (P:Prop) : hprop :=
\∃ (p:P), \[].
Definition hand (H1 H2 : hprop) : hprop :=
\∀ (b:bool), if b then H1 else H2.
Definition hor (H1 H2 : hprop) : hprop :=
\∃ (b:bool), if b then H1 else H2.
Definition hwand (H1 H2 : hprop) : hprop :=
\∃ H0, H0 \* \[ (H1 \* H0) ==> H2 ].
Definition qwand (Q1 Q2 : val→hprop) : hprop :=
\∀ v, (Q1 v) \−∗ (Q2 v).
End ReaminingOperatorsDerived.
Definition hpure (P:Prop) : hprop :=
\∃ (p:P), \[].
Definition hand (H1 H2 : hprop) : hprop :=
\∀ (b:bool), if b then H1 else H2.
Definition hor (H1 H2 : hprop) : hprop :=
\∃ (b:bool), if b then H1 else H2.
Definition hwand (H1 H2 : hprop) : hprop :=
\∃ H0, H0 \* \[ (H1 \* H0) ==> H2 ].
Definition qwand (Q1 Q2 : val→hprop) : hprop :=
\∀ v, (Q1 v) \−∗ (Q2 v).
End ReaminingOperatorsDerived.
Of course, these derived operators could also be defined directly as
predicate over heaps. The definitions are shown below. However, establishing
properties of such low-level definitions requires more effort than
establishing properties for the derived definitions shown above. Indeed,
when operators are defined as derived operations, their properties may be
established with help of the powerful entailment simplification tactic
xsimpl.
Module ReaminingOperatorsDirect.
Definition hpure (P:Prop) : hprop :=
fun h ⇒ (h = Fmap.empty) ∧ P.
Definition hor (H1 H2 : hprop) : hprop :=
fun h ⇒ H1 h ∨ H2 h.
Definition hand (H1 H2 : hprop) : hprop :=
fun h ⇒ H1 h ∧ H2 h.
Definition hwand (H1 H2:hprop) : hprop :=
fun h ⇒ ∀ h', Fmap.disjoint h h' → H1 h' → H2 (h \u h').
Definition qwand (Q1 Q2:val→hprop) : hprop :=
fun h ⇒ ∀ v h', Fmap.disjoint h h' → Q1 v h' → Q2 v (h \u h').
End ReaminingOperatorsDirect.
End SummaryHprop.
Definition hpure (P:Prop) : hprop :=
fun h ⇒ (h = Fmap.empty) ∧ P.
Definition hor (H1 H2 : hprop) : hprop :=
fun h ⇒ H1 h ∨ H2 h.
Definition hand (H1 H2 : hprop) : hprop :=
fun h ⇒ H1 h ∧ H2 h.
Definition hwand (H1 H2:hprop) : hprop :=
fun h ⇒ ∀ h', Fmap.disjoint h h' → H1 h' → H2 (h \u h').
Definition qwand (Q1 Q2:val→hprop) : hprop :=
fun h ⇒ ∀ v h', Fmap.disjoint h h' → Q1 v h' → Q2 v (h \u h').
End ReaminingOperatorsDirect.
End SummaryHprop.
Recall the consequence-frame rule, which is used pervasively -- for example
by the tactic xapp, for reasoning about applications.
Parameter triple_conseq_frame : ∀ H2 H1 Q1 t H Q,
triple t H1 Q1 →
H ==> H1 \* H2 →
Q1 \*+ H2 ===> Q →
triple t H Q.
triple t H1 Q1 →
H ==> H1 \* H2 →
Q1 \*+ H2 ===> Q →
triple t H Q.
This rule suffers from a practical issue, which we illustrate in detail on a
concrete example further on. At a high-level, though, the problem stems from
the fact that we need to instantiate H2 when applying the rule. Providing
H2 by hand is not practical, thus we need to infer it. The value of H2
can be computed as the subtraction of H minus H1. The resulting value
may then exploited in the last premise for constructing Q1 \*+ H2. This
transfer of information via H2 from one subgoal to another can be obtained
by introducing an "evar" (Coq unification variable) for H2. However this
approach does not work well in cases where H contains existential
quantifiers. This is because such existential quantifiers are typically
first extracted out of the entailment H ==> H1 \* H2 by the tactic
xsimpl. But these existentially quantified variables are not in the scope
of H2, so the instantiation of the evar associated with H2 typically
fails.
The "ramified frame rule" exploits the magic wand operator to circumvent
this problem, by merging the two premises H ==> H1 \* H2 and
Q1 \*+ H2 ===> Q into a single premise that no longer mentions H2. This
replacement premise is H ==> H1 \* (Q1 \−−∗ Q). To understand where it
comes from, observe first that the second premise Q1 \*+ H2 ===> Q is
equivalent to H2 ==> (Q1 \−−∗ Q). By replacing H2 with Q1 \−−∗ Q
inside the first premise H ==> H1 \* H2, we obtain the new premise
H ==> H1 \* (Q1 \−−∗ Q). This merge of the two entailments leads us to the
statement of the "ramified frame rule" shown below.
Lemma triple_ramified_frame : ∀ H1 Q1 t H Q,
triple t H1 Q1 →
H ==> H1 \* (Q1 \−−∗ Q) →
triple t H Q.
Proof using.
introv M W. applys triple_conseq_frame (Q1 \−−∗ Q) M.
{ applys W. } { applys qwand_cancel. }
Qed.
triple t H1 Q1 →
H ==> H1 \* (Q1 \−−∗ Q) →
triple t H Q.
Proof using.
introv M W. applys triple_conseq_frame (Q1 \−−∗ Q) M.
{ applys W. } { applys qwand_cancel. }
Qed.
Reciprocally, we can prove that the ramified frame rule entails the
consequence-frame rule. Hence, the ramified frame rule has the same
expressive power as the consequence-frame rule.
Lemma triple_conseq_frame_of_ramified_frame : ∀ H2 H1 Q1 t H Q,
triple t H1 Q1 →
H ==> H1 \* H2 →
Q1 \*+ H2 ===> Q →
triple t H Q.
Proof using.
introv M WH WQ. applys triple_ramified_frame M.
xchange WH. xsimpl. rewrite qwand_equiv. applys WQ.
Qed.
triple t H1 Q1 →
H ==> H1 \* H2 →
Q1 \*+ H2 ===> Q →
triple t H Q.
Proof using.
introv M WH WQ. applys triple_ramified_frame M.
xchange WH. xsimpl. rewrite qwand_equiv. applys WQ.
Qed.
Benefits of the Ramified Frame Rule
Parameter triple_conseq_frame' : ∀ H2 H1 Q1 t H Q,
triple t H1 Q1 →
H ==> H1 \* H2 →
Q1 \*+ H2 ===> Q →
triple t H Q.
triple t H1 Q1 →
H ==> H1 \* H2 →
Q1 \*+ H2 ===> Q →
triple t H Q.
One practical caveat with this rule is that we must resolve H2, which
corresponds to the difference between H and H1. In practice, providing
H2 explicitly is extremely tedious. The alternative is to leave H2 as an
evar, and count on the fact that the tactic xsimpl, when applied to
H ==> H1 \* H2, will correctly instantiate H2. This approach works in
simple cases, but fails in particular in the case where H contains an
existential quantifier.
For a concrete example, recall the specification of the primitive ref,
which allocates a reference.
Assume that wish to derive the following triple, which extends both the
precondition and the postcondition of triple_ref with the heap predicate
\∃ l' v', l' ~~> v'.
This predicate describes the existence of some other, totally unspecified,
reference cell. It is a bit artificial but illustrates the issue.
Lemma triple_ref_extended : ∀ (v:val),
triple (val_ref v)
(\∃ l' v', l' ~~> v')
(funloc p ⇒ p ~~> v \* \∃ l' v', l' ~~> v').
triple (val_ref v)
(\∃ l' v', l' ~~> v')
(funloc p ⇒ p ~~> v \* \∃ l' v', l' ~~> v').
Let's try to prove that this specification is derivable from the original
triple_ref.
Proof using.
intros. applys triple_conseq_frame.
(* observe the evar ?H2 that appears in the second and third subgoals *)
{ applys triple_ref. }
{ (* here, ?H2 should in theory be instantiated with the LHS.
but xsimpl's strategy is to first extract the quantifiers
from the LHS. After that, the instantiation of ?H2 fails,
because the LHS contains variables that are not defined in
the scope of the evar ?H2 at the time it was introduced. *)
xsimpl.
Abort.
intros. applys triple_conseq_frame.
(* observe the evar ?H2 that appears in the second and third subgoals *)
{ applys triple_ref. }
{ (* here, ?H2 should in theory be instantiated with the LHS.
but xsimpl's strategy is to first extract the quantifiers
from the LHS. After that, the instantiation of ?H2 fails,
because the LHS contains variables that are not defined in
the scope of the evar ?H2 at the time it was introduced. *)
xsimpl.
Abort.
Now, let us apply the ramified frame rule to carry out the same proof, and
observe how the problem does not show up.
Lemma triple_ref_extended' : ∀ (v:val),
triple (val_ref v)
(\∃ l' v', l' ~~> v')
(funloc p ⇒ p ~~> v \* \∃ l' v', l' ~~> v').
Proof using.
intros. applys triple_ramified_frame.
{ applys triple_ref. }
{ xsimpl.
(* Here again, xsimpl's strategy pulls out the existentially quantified
variables from the LHS. But it works here because the remainder of the
reasoning takes place in the same subgoal, in the scope of the extended
Coq context. *)
intros l' v'.
(* The proof obligation is of the form (l' ~~> v) ==> (Q1 \−−∗ Q2),
which is equivalent to Q1 \*+ (l' ~~> v) ===> Q2 according to
the lemma qwand_equiv. *)
rewrite qwand_equiv. (* same as apply qwand_equiv *)
intros x. xsimpl. auto. }
Qed.
End RamifiedFrame.
triple (val_ref v)
(\∃ l' v', l' ~~> v')
(funloc p ⇒ p ~~> v \* \∃ l' v', l' ~~> v').
Proof using.
intros. applys triple_ramified_frame.
{ applys triple_ref. }
{ xsimpl.
(* Here again, xsimpl's strategy pulls out the existentially quantified
variables from the LHS. But it works here because the remainder of the
reasoning takes place in the same subgoal, in the scope of the extended
Coq context. *)
intros l' v'.
(* The proof obligation is of the form (l' ~~> v) ==> (Q1 \−−∗ Q2),
which is equivalent to Q1 \*+ (l' ~~> v) ===> Q2 according to
the lemma qwand_equiv. *)
rewrite qwand_equiv. (* same as apply qwand_equiv *)
intros x. xsimpl. auto. }
Qed.
End RamifiedFrame.
The entailment \[] ==> (H \−∗ H) holds for any H. But the symmetrical
entailement (H \−∗ H) ==> \[] is false. For a counterexample, instantiate
H as \[False]. Any heap satisfies \[False] \−∗ \[False]. But only the
empty heap satisfies \[].
Lemma himpl_hwand_same_hempty_counterexample :
¬ (∀ H, (H \−∗ H) ==> \[]).
Proof using.
rew_logic. (* rewrite "not forall" as "exists not" *)
∃ \[False]. intros M.
lets (h,Hh): (@Fmap.exists_not_empty val _).
forwards K: M h.
{ applys* himpl_hwand_r (fun h ⇒ h ≠ Fmap.empty). xsimpl*. }
lets: hempty_inv K. false* Hh.
Qed.
¬ (∀ H, (H \−∗ H) ==> \[]).
Proof using.
rew_logic. (* rewrite "not forall" as "exists not" *)
∃ \[False]. intros M.
lets (h,Hh): (@Fmap.exists_not_empty val _).
forwards K: M h.
{ applys* himpl_hwand_r (fun h ⇒ h ≠ Fmap.empty). xsimpl*. }
lets: hempty_inv K. false* Hh.
Qed.
As another tempting yet false property of the magic wand, consider the
converse of the cancellation lemma, that is, H2 ==> H1 \* (H1 \−∗ H2). It
does not hold in general. As a counter-example, consider H2 = \[] and
H1 = \[False]. The empty heap satisfies the left-hand side of the
entailment, but it does does not satisfy \[False] \* (\[False] \−∗ \[]),
because there is no way to establish False out of thin air.
Lemma not_himpl_hwand_r_inv_reciprocal : ∃ H1 H2,
¬ (H2 ==> H1 \* (H1 \−∗ H2)).
Proof using.
∃ \[False] \[]. intros N. forwards K: N (Fmap.empty:heap).
applys hempty_intro. rewrite hstar_hpure_l in K. destruct K. auto.
Qed.
¬ (H2 ==> H1 \* (H1 \−∗ H2)).
Proof using.
∃ \[False] \[]. intros N. forwards K: N (Fmap.empty:heap).
applys hempty_intro. rewrite hstar_hpure_l in K. destruct K. auto.
Qed.
More generally, we should be suspicious of any entailment that introduces
wands "out of nowhere".
The entailment hwand_trans_elim:
(H1 \−∗ H2) \* (H2 \−∗ H3) ==> (H1 \−∗ H3) is correct because,
intuitively, the left-hand-side captures that H1 ≤ H2 and that H2 ≤ H3
for some vaguely defined notion of ≤ as "being a subset of". On the
contrary, the reciprocal entailment
(H1 \−∗ H3) ==> (H1 \−∗ H2) \* (H2 \−∗ H3) is false. Intuitively, from
H1 ≤ H3 there is no way to justify H1 ≤ H2 nor H2 ≤ H3.
In what follows we prove the equivalence between the three characterizations
of hwand H1 H2 that we have presented:
1. The definition hwand expressed directly in terms of heaps:
fun h ⇒ ∀ h', Fmap.disjoint h h' → H1 h' → H2 (h' \u h)
2. The definition hwand expressed in terms of existing operators:
\∃ H0, H0 \* \[ (H1 \* H0) ==> H2]
3. The characterization via the equivalence hwand_equiv:
∀ H0 H1 H2, (H0 ==> H1 \−∗ H2) ↔ (H1 \* H0 ==> H2).
4. The characterization via the pair of the introduction rule
himpl_hwand_r and the elimination rule hwand_cancel.
To prove the 4-way equivalence, we first prove the equivalence between (1)
and (2), then prove the equivalence between (2) and (3), and finally the
equivalence between (3) and (4).
Definition hwand_characterization_1 (op:hprop→hprop→hprop) :=
op = (fun H1 H2 ⇒
(fun h ⇒ ∀ h', Fmap.disjoint h h' → H1 h' → H2 (h' \u h))).
Definition hwand_characterization_2 (op:hprop→hprop→hprop) :=
op = (fun H1 H2 ⇒ \∃ H0, H0 \* \[ H1 \* H0 ==> H2 ]).
Definition hwand_characterization_3 (op:hprop→hprop→hprop) :=
∀ H0 H1 H2, (H0 ==> op H1 H2) ↔ (H1 \* H0 ==> H2).
Definition hwand_characterization_4 (op:hprop→hprop→hprop) :=
(∀ H0 H1 H2, (H1 \* H0 ==> H2) → (H0 ==> op H1 H2))
∧ (∀ H1 H2, (H1 \* (op H1 H2) ==> H2)).
op = (fun H1 H2 ⇒
(fun h ⇒ ∀ h', Fmap.disjoint h h' → H1 h' → H2 (h' \u h))).
Definition hwand_characterization_2 (op:hprop→hprop→hprop) :=
op = (fun H1 H2 ⇒ \∃ H0, H0 \* \[ H1 \* H0 ==> H2 ]).
Definition hwand_characterization_3 (op:hprop→hprop→hprop) :=
∀ H0 H1 H2, (H0 ==> op H1 H2) ↔ (H1 \* H0 ==> H2).
Definition hwand_characterization_4 (op:hprop→hprop→hprop) :=
(∀ H0 H1 H2, (H1 \* H0 ==> H2) → (H0 ==> op H1 H2))
∧ (∀ H1 H2, (H1 \* (op H1 H2) ==> H2)).
The equivalence proofs are given here for reference. The reader needs not
follow through the details of these proofs.
Lemma hwand_characterization_1_eq_2 :
hwand_characterization_1 = hwand_characterization_2.
Proof using.
applys pred_ext_1. intros op.
unfold hwand_characterization_1, hwand_characterization_2.
asserts K: (∀ A B, A = B → (op = A ↔ op = B)).
{ intros. iff; subst*. } apply K; clear K.
apply pred_ext_3. intros H1 H2 h. iff M.
{ ∃ (=h). rewrite hstar_hpure_r. split.
{ auto. }
{ intros h3 K3. rewrite hstar_comm in K3.
destruct K3 as (h1&h2&K1&K2&D&U). subst h1 h3.
rewrites (>> union_comm_of_disjoint D). applys M D K2. } }
{ (* This direction reproduces the proof of hwand_inv. *)
intros h1 D K1. destruct M as (H0&M).
destruct M as (h0&h2&K0&K2&D'&U).
lets (N&E): hpure_inv (rm K2). subst h h2.
rewrite Fmap.union_empty_r in *.
applys N. applys hstar_intro K1 K0. applys disjoint_sym D. }
Qed.
Lemma hwand_characterization_2_eq_3 :
hwand_characterization_2 = hwand_characterization_3.
Proof using.
applys pred_ext_1. intros op.
unfold hwand_characterization_2, hwand_characterization_3. iff K.
{ subst. intros. (* apply hwand_equiv. *) iff M.
{ xchange M. intros H3 N. xchange N. }
{ xsimpl H0. xchange M. } }
{ apply fun_ext_2. intros H1 H2. apply himpl_antisym.
{ lets (M&_): (K (op H1 H2) H1 H2). xsimpl (op H1 H2).
applys M. applys himpl_refl. }
{ xsimpl. intros H0 M. rewrite K. applys M. } }
Qed.
Lemma hwand_characterization_3_eq_4 :
hwand_characterization_3 = hwand_characterization_4.
Proof using.
applys pred_ext_1. intros op.
unfold hwand_characterization_3, hwand_characterization_4. iff K.
{ split.
{ introv M. apply <- K. apply M. }
{ intros. apply K. auto. } }
{ destruct K as (K1&K2). intros. split.
{ introv M. xchange M. xchange (K2 H1 H2). }
{ introv M. applys K1. applys M. } }
Qed.
End HwandEquiv.
hwand_characterization_1 = hwand_characterization_2.
Proof using.
applys pred_ext_1. intros op.
unfold hwand_characterization_1, hwand_characterization_2.
asserts K: (∀ A B, A = B → (op = A ↔ op = B)).
{ intros. iff; subst*. } apply K; clear K.
apply pred_ext_3. intros H1 H2 h. iff M.
{ ∃ (=h). rewrite hstar_hpure_r. split.
{ auto. }
{ intros h3 K3. rewrite hstar_comm in K3.
destruct K3 as (h1&h2&K1&K2&D&U). subst h1 h3.
rewrites (>> union_comm_of_disjoint D). applys M D K2. } }
{ (* This direction reproduces the proof of hwand_inv. *)
intros h1 D K1. destruct M as (H0&M).
destruct M as (h0&h2&K0&K2&D'&U).
lets (N&E): hpure_inv (rm K2). subst h h2.
rewrite Fmap.union_empty_r in *.
applys N. applys hstar_intro K1 K0. applys disjoint_sym D. }
Qed.
Lemma hwand_characterization_2_eq_3 :
hwand_characterization_2 = hwand_characterization_3.
Proof using.
applys pred_ext_1. intros op.
unfold hwand_characterization_2, hwand_characterization_3. iff K.
{ subst. intros. (* apply hwand_equiv. *) iff M.
{ xchange M. intros H3 N. xchange N. }
{ xsimpl H0. xchange M. } }
{ apply fun_ext_2. intros H1 H2. apply himpl_antisym.
{ lets (M&_): (K (op H1 H2) H1 H2). xsimpl (op H1 H2).
applys M. applys himpl_refl. }
{ xsimpl. intros H0 M. rewrite K. applys M. } }
Qed.
Lemma hwand_characterization_3_eq_4 :
hwand_characterization_3 = hwand_characterization_4.
Proof using.
applys pred_ext_1. intros op.
unfold hwand_characterization_3, hwand_characterization_4. iff K.
{ split.
{ introv M. apply <- K. apply M. }
{ intros. apply K. auto. } }
{ destruct K as (K1&K2). intros. split.
{ introv M. xchange M. xchange (K2 H1 H2). }
{ introv M. applys K1. applys M. } }
Qed.
End HwandEquiv.
In what follows we prove the equivalence between five equivalent
characterizations of qwand H1 H2:
1. The definition expressed directly in terms of heaps:
fun h ⇒ ∀ v h', Fmap.disjoint h h' → Q1 v h' → Q2 v (h \u h')
2. The definition qwand, expressed in terms of existing operators:
\∃ H0, H0 \* \[ (Q1 \*+ H0) ===> Q2]
3. The definition expressed using the universal quantifier:
\∀ v, (Q1 v) \−∗ (Q2 v)
4. The characterization via the equivalence hwand_equiv:
∀ H0 H1 H2, (H0 ==> H1 \−∗ H2) ↔ (H1 \* H0 ==> H2).
5. The characterization via the pair of the introduction rule
himpl_qwand_r and the elimination rule qwand_cancel.
The proof are essentially identical to the equivalence proofs for hwand,
except for definition (3), which is specific to qwand.
Definition qwand_characterization_1 op :=
op = (fun Q1 Q2 ⇒ (fun h ⇒ ∀ v h', Fmap.disjoint h h' →
Q1 v h' → Q2 v (h \u h'))).
Definition qwand_characterization_2 op :=
op = (fun Q1 Q2 ⇒ \∃ H0, H0 \* \[ Q1 \*+ H0 ===> Q2 ]).
Definition qwand_characterization_3 op :=
op = (fun Q1 Q2 ⇒ \∀ v, (Q1 v) \−∗ (Q2 v)).
Definition qwand_characterization_4 op :=
∀ H0 Q1 Q2, (H0 ==> op Q1 Q2) ↔ (Q1 \*+ H0 ===> Q2).
Definition qwand_characterization_5 op :=
(∀ H0 Q1 Q2, (Q1 \*+ H0 ===> Q2) → (H0 ==> op Q1 Q2))
∧ (∀ Q1 Q2, (Q1 \*+ (op Q1 Q2) ===> Q2)).
op = (fun Q1 Q2 ⇒ (fun h ⇒ ∀ v h', Fmap.disjoint h h' →
Q1 v h' → Q2 v (h \u h'))).
Definition qwand_characterization_2 op :=
op = (fun Q1 Q2 ⇒ \∃ H0, H0 \* \[ Q1 \*+ H0 ===> Q2 ]).
Definition qwand_characterization_3 op :=
op = (fun Q1 Q2 ⇒ \∀ v, (Q1 v) \−∗ (Q2 v)).
Definition qwand_characterization_4 op :=
∀ H0 Q1 Q2, (H0 ==> op Q1 Q2) ↔ (Q1 \*+ H0 ===> Q2).
Definition qwand_characterization_5 op :=
(∀ H0 Q1 Q2, (Q1 \*+ H0 ===> Q2) → (H0 ==> op Q1 Q2))
∧ (∀ Q1 Q2, (Q1 \*+ (op Q1 Q2) ===> Q2)).
Here again, we show proofs for the reference, but the reader needs not
follow through the details.
Lemma hwand_characterization_1_eq_2 :
qwand_characterization_1 = qwand_characterization_2.
Proof using.
applys pred_ext_1. intros op.
unfold qwand_characterization_1, qwand_characterization_2.
asserts K: (∀ A B, A = B → (op = A ↔ op = B)).
{ intros. iff; subst*. } apply K; clear K.
apply pred_ext_3. intros Q1 Q2 h. iff M.
{ ∃ (=h). rewrite hstar_hpure_r. split.
{ auto. }
{ intros v h3 K3. rewrite hstar_comm in K3.
destruct K3 as (h1&h2&K1&K2&D&U). subst h1 h3. applys M D K2. } }
{ intros v h1 D K1. destruct M as (H0&M).
destruct M as (h0&h2&K0&K2&D'&U).
lets (N&E): hpure_inv (rm K2). subst h h2.
rewrite Fmap.union_empty_r in *.
applys N. rewrite hstar_comm. applys hstar_intro K0 K1 D. }
Qed.
Lemma qwand_characterization_2_eq_3 :
qwand_characterization_2 = qwand_characterization_3.
Proof using.
applys pred_ext_1. intros op.
unfold qwand_characterization_2, qwand_characterization_3.
asserts K: (∀ A B, A = B → (op = A ↔ op = B)).
{ intros. iff; subst*. } apply K; clear K.
apply fun_ext_2. intros Q1 Q2. apply himpl_antisym.
{ xpull. intros H0 M. applys himpl_hforall_r. intros v.
rewrite hwand_equiv. xchange M. }
{ xsimpl (qwand Q1 Q2). applys qwand_cancel. }
Qed.
Lemma qwand_characterization_2_eq_4 :
qwand_characterization_2 = qwand_characterization_4.
Proof using.
applys pred_ext_1. intros op.
unfold qwand_characterization_2, qwand_characterization_4. iff K.
{ subst. intros. iff M.
{ xchange M. intros v H3 N. xchange N. }
{ xsimpl H0. xchange M. } }
{ apply fun_ext_2. intros H1 H2. apply himpl_antisym.
{ lets (M&_): (K (op H1 H2) H1 H2). xsimpl (op H1 H2).
applys M. applys himpl_refl. }
{ xsimpl. intros H0 M. rewrite K. applys M. } }
Qed.
Lemma qwand_characterization_4_eq_5 :
qwand_characterization_4 = qwand_characterization_5.
Proof using.
applys pred_ext_1. intros op.
unfold qwand_characterization_4, qwand_characterization_5. iff K.
{ split.
{ introv M. apply <- K. apply M. }
{ intros. apply K. auto. } }
{ destruct K as (K1&K2). intros. split.
{ introv M. xchange M. xchange (K2 Q1 Q2). }
{ introv M. applys K1. applys M. } }
Qed.
End QwandEquiv.
qwand_characterization_1 = qwand_characterization_2.
Proof using.
applys pred_ext_1. intros op.
unfold qwand_characterization_1, qwand_characterization_2.
asserts K: (∀ A B, A = B → (op = A ↔ op = B)).
{ intros. iff; subst*. } apply K; clear K.
apply pred_ext_3. intros Q1 Q2 h. iff M.
{ ∃ (=h). rewrite hstar_hpure_r. split.
{ auto. }
{ intros v h3 K3. rewrite hstar_comm in K3.
destruct K3 as (h1&h2&K1&K2&D&U). subst h1 h3. applys M D K2. } }
{ intros v h1 D K1. destruct M as (H0&M).
destruct M as (h0&h2&K0&K2&D'&U).
lets (N&E): hpure_inv (rm K2). subst h h2.
rewrite Fmap.union_empty_r in *.
applys N. rewrite hstar_comm. applys hstar_intro K0 K1 D. }
Qed.
Lemma qwand_characterization_2_eq_3 :
qwand_characterization_2 = qwand_characterization_3.
Proof using.
applys pred_ext_1. intros op.
unfold qwand_characterization_2, qwand_characterization_3.
asserts K: (∀ A B, A = B → (op = A ↔ op = B)).
{ intros. iff; subst*. } apply K; clear K.
apply fun_ext_2. intros Q1 Q2. apply himpl_antisym.
{ xpull. intros H0 M. applys himpl_hforall_r. intros v.
rewrite hwand_equiv. xchange M. }
{ xsimpl (qwand Q1 Q2). applys qwand_cancel. }
Qed.
Lemma qwand_characterization_2_eq_4 :
qwand_characterization_2 = qwand_characterization_4.
Proof using.
applys pred_ext_1. intros op.
unfold qwand_characterization_2, qwand_characterization_4. iff K.
{ subst. intros. iff M.
{ xchange M. intros v H3 N. xchange N. }
{ xsimpl H0. xchange M. } }
{ apply fun_ext_2. intros H1 H2. apply himpl_antisym.
{ lets (M&_): (K (op H1 H2) H1 H2). xsimpl (op H1 H2).
applys M. applys himpl_refl. }
{ xsimpl. intros H0 M. rewrite K. applys M. } }
Qed.
Lemma qwand_characterization_4_eq_5 :
qwand_characterization_4 = qwand_characterization_5.
Proof using.
applys pred_ext_1. intros op.
unfold qwand_characterization_4, qwand_characterization_5. iff K.
{ split.
{ introv M. apply <- K. apply M. }
{ intros. apply K. auto. } }
{ destruct K as (K1&K2). intros. split.
{ introv M. xchange M. xchange (K2 Q1 Q2). }
{ introv M. applys K1. applys M. } }
Qed.
End QwandEquiv.
Historical Notes
(* 2024-11-04 20:38 *)