WPgenWeakest Precondition Generator
Set Implicit Arguments.
From SLF Require Import WPsem.
Implicit Types f : var.
Implicit Types b : bool.
Implicit Types v : val.
Implicit Types h : heap.
Implicit Types P : Prop.
Implicit Types H : hprop.
Implicit Types Q : val→hprop.
From SLF Require Import WPsem.
Implicit Types f : var.
Implicit Types b : bool.
Implicit Types v : val.
Implicit Types h : heap.
Implicit Types P : Prop.
Implicit Types H : hprop.
Implicit Types Q : val→hprop.
First Pass
wp t1 (fun r ⇒ wp t2 Q) ==> wp (trm_seq t1 t2) Q
- how to define wpgen t Q as a recursive function in Coq,
- how to integrate support for the frame rule in this definition,
- how to carry out practical proofs using wpgen.
The Basic Structure of wpgen
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
| trm_val v ⇒ Q v
| trm_var x ⇒ \[False]
| trm_app v1 v2 ⇒ \∃ H, H \* \[triple t H Q]
| trm_let x t1 t2 ⇒ wpgen t1 (fun v ⇒ wpgen (subst x v t2) Q)
...
end. Recall from the previous chapter that the rule wp_val asserts that Q v entails wp (trm_val v) Q. Well, wpgen (trm_val v) Q is defined as Q v.
Step 1: wpgen as a Recursive Function over Terms
Fixpoint wpgen (E:ctx) (t:trm) (Q:val→hprop) : hprop :=
match t with
| trm_val v ⇒ Q v
| trm_var x ⇒
match lookup x E with
| Some v ⇒ Q v
| None ⇒ \[False]
end
| trm_app v1 v2 ⇒ \∃ H, H \* \[triple (isubst E t) H Q]
| trm_let x t1 t2 ⇒ wpgen E t1 (fun v ⇒ wpgen ((x,v)::E) t2 Q)
...
end.
Step 2: wpgen Reformulated to Eagerly Match on the Term
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
match t with
| trm_val v ⇒ fun (Q:val→hprop) ⇒ Q v
| trm_var x ⇒ fun (Q:val→hprop) ⇒
match lookup x E with
| Some v ⇒ Q v
| None ⇒ \[False]
end
| trm_app t1 t2 ⇒ fun (Q:val→hprop) ⇒
\∃ H, H \* \[triple (isubst E t) H Q]
| trm_let x t1 t2 ⇒ fun (Q:val→hprop) ⇒
wpgen E t1 (fun v ⇒ wpgen ((x,v)::E) t2 Q)
...
end.
Step 3: wpgen Reformulated with Auxiliary Definitions
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
match t with
| trm_val v ⇒ wpgen_val v
| trm_var x ⇒ wpgen_var E x
| trm_app t1 t2 ⇒ wpgen_app (isubst E t)
| trm_let x t1 t2 ⇒ wpgen_let (wpgen E t1) (fun v ⇒ wpgen ((x,v)::E) t2)
...
end. Each of the auxiliary definitions introduced for wpgen comes with a custom notation that enables a nice display of the output of wpgen. For example, the notation Let' v := F1 in F2 stands for wpgen_let F1 (fun v ⇒ F2). Thanks to this notation, the result of computing wpgen on a source term Let x := t1 in t2, which is an Coq expression of type trm, is a Coq expression of type formula displayed as Let' x := F1 in F2.
Step 4: wpgen Augmented with Support for Structural Rules
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct (match t with
| trm_val v ⇒ ...
| ...
end). Without going into the details at this stage, the predicate mkstruct is a function of type formula→formula that captures the essence of the wp-style consequence-frame rule wp_conseq_frame, presented the previous chapter. This rule asserts that Q1 \*+ H ===> Q2 implies (wp t Q1) \* H ==> (wp t Q2).
Definition of wpgen for Each Term Construct
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
| trm_val v ⇒ ..
| trm_seq t1 t2 ⇒ ..
| trm_let x t1 t2 ⇒ ..
| trm_var x ⇒ ..
| trm_app t1 t2 ⇒ ..
| trm_fun x t1 ⇒ ..
| trm_fix f x t1 ⇒ ..
| trm_if v0 t1 t2 ⇒ ..
end. Our first goal is to figure out how to fill in the dots for each of the term constructors. The intention that guides us is the soundness theorem for wpgen, which has the following form:
wpgen t Q ==> wp t Q This entailment asserts in particular that, if we are able to establish a statement of the form H ==> wpgen t Q, then we can derive H ==> wp t Q from it. The latter is also equivalent to triple t H Q. Thus, wpgen can be viewed as a practical tool for establishing triples.
Definition of wpgen for Values
The soundness theorem for wpgen requires the entailment
wpgen (trm_val v) Q ==> wp (trm_val v) Q to hold.
To satisfy this entailment, according to the rule wp_val, it suffices to
define wpgen (trm_val v) Q as Q v.
Concretely, we fill in the first dots as follows:
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
| trm_val v ⇒ Q v
...
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
| trm_val v ⇒ Q v
...
Definition of wpgen for Functions
Following this rule, we define wpgen (trm_fun x t1) Q as
Q (val_fun x t1). Likewise for recursive functions, we define
wpgen (trm_fix f x t1) Q as Q (val_fix f x t1).
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
...
| trm_fun x t1 ⇒ Q (val_fun x t1)
| trm_fix f x t1 ⇒ Q (val_fix f x t1)
...
An interesting question that arises here is: why does
wpgen (trm_fun x t1) Q not trigger a recursive call to wpgen on t1?
The long answer is detailed in the last section of this chapter (module
WPgenRec). The short answer is:
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
...
| trm_fun x t1 ⇒ Q (val_fun x t1)
| trm_fix f x t1 ⇒ Q (val_fix f x t1)
...
- it is not technically needed to recurse in the body of local functions, in the sense that the user does not loose any ability to reason about local functions;
- it may be interesting to recurse the body of local functions because it may save the need for the user to manually invoke the tactic xwp for each local function.
The intention is for wpgen to admit the same semantics as wp. We thus
expect the definition of wpgen (trm_seq t1 t2) Q to have a similar shape
to wp t1 (fun v ⇒ wp t2 Q).
We therefore define wpgen (trm_seq t1 t2) Q as
wpgen t1 (fun v ⇒ wpgen t2 Q). The definition of wpgen is extended as
follows:
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
...
| trm_seq t1 t2 ⇒ wpgen t1 (fun v ⇒ wpgen t2 Q)
...
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
...
| trm_seq t1 t2 ⇒ wpgen t1 (fun v ⇒ wpgen t2 Q)
...
Definition of wpgen for Let-Bindings
We fill in the dots as follows:
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
...
| trm_let x t1 t2 ⇒ wpgen t1 (fun v ⇒ wpgen (subst x v t2) Q)
... Observe that in the above definition, the second recursive call is invoked on subst x v t2, which is not a strict subterm of t. As explained earlier, this recursion pattern motivates the introduction of substitution contexts, written E, to delay the computation of substitutions until the leaves of the recursion.
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
...
| trm_let x t1 t2 ⇒ wpgen t1 (fun v ⇒ wpgen (subst x v t2) Q)
... Observe that in the above definition, the second recursive call is invoked on subst x v t2, which is not a strict subterm of t. As explained earlier, this recursion pattern motivates the introduction of substitution contexts, written E, to delay the computation of substitutions until the leaves of the recursion.
Definition of wpgen for Variables
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
...
| trm_var x ⇒ \[False]
...
Lemma wp_var : ∀ x Q,
\[False] ==> wp (trm_var x) Q.
Proof using. intros. intros h Hh. destruct (hpure_inv Hh). false. Qed.
Lemma triple_var : ∀ x H Q,
False →
triple (trm_var x) H Q.
Proof using. intros. false. Qed.
Lemma triple_var' : ∀ x Q,
triple (trm_var x) \[False] Q.
Proof using. intros. rewrite <- wp_equiv. applys wp_var. Qed.
\[False] ==> wp (trm_var x) Q.
Proof using. intros. intros h Hh. destruct (hpure_inv Hh). false. Qed.
Lemma triple_var : ∀ x H Q,
False →
triple (trm_var x) H Q.
Proof using. intros. false. Qed.
Lemma triple_var' : ∀ x Q,
triple (trm_var x) \[False] Q.
Proof using. intros. rewrite <- wp_equiv. applys wp_var. Qed.
All these rules are correct, albeit totally useless.
Definition of wpgen for Function Applications
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
...
| trm_app t1 t2 ⇒ ∃ H, H \* \[triple t H Q]
...
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
...
| trm_app t1 t2 ⇒ wp t Q
... However, this definition would require converting the wp into a triple each time, because specifications are, by convention, expressed using the predicate triple.
Definition of wpgen for Conditionals
Parameter wp_if : ∀ (b:bool) t1 t2 Q,
(if b then (wp t1 Q) else (wp t2 Q)) ==> wp (trm_if (val_bool b) t1 t2) Q.
(if b then (wp t1 Q) else (wp t2 Q)) ==> wp (trm_if (val_bool b) t1 t2) Q.
Typically, a source program may feature a conditional
trm_if (trm_var x) t1 t2 that, after substitution for x, becomes
trm_if (trm_val v) t1 t2, for some abstract v of type val. Yet, in
general, because we are working here with possibly ill-typed programs, this
value is not know to be a boolean value. We therefore need to define wpgen
for all if-statements of the form trm_if (trm_val v0) t1 t2, where v0
could be a value of unknown shape.
However, the reasoning rule wp_if stated above features a right-hand side
of the form wp (trm_if (val_bool b) t1 t2) Q. It only applies when the
first argument of trm_if is syntactically a boolean value b. To resolve
this mismatch, the definition of wpgen for a term trm_if t0 t1 t2
quantifies existentially over a boolean value b such that
t0 = trm_val (val_bool b). This way, if t0 is not a boolean value, then
wpgen (trm_if t0 t1 t2) Q is equivalent to \[False]. Otherwise, if t0
is of the form val_bool b, and we are able to perform a case analysis on
b, to switch between wpgen t1 Q and wpgen t2 Q depending on the value
of b.
The formal definition is:
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
...
| trm_if t0 t1 t2 ⇒
\∃ (b:bool), \[t0 = trm_val (val_bool b)]
\* (if b then (wpgen t1) Q else (wpgen t2) Q)
...
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
...
| trm_if t0 t1 t2 ⇒
\∃ (b:bool), \[t0 = trm_val (val_bool b)]
\* (if b then (wpgen t1) Q else (wpgen t2) Q)
...
Summary of the Definition So Far
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
| trm_val v ⇒ Q v
| trm_fun x t1 ⇒ Q (val_fun x t)
| trm_fix f x t1 ⇒ Q (val_fix f x t)
| trm_seq t1 t2 ⇒ wpgen t1 (fun v ⇒ wpgen t2 Q)
| trm_let x t1 t2 ⇒ wpgen t1 (fun v ⇒ wpgen (subst x v t2) Q)
| trm_var x ⇒ \[False]
| trm_app t1 t2 ⇒ ∃ H, H \* \[triple t H Q]
| trm_if t0 t1 t2 ⇒
\∃ (b:bool), \[t0 = trm_val (val_bool b)]
\* (if b then (wpgen t1) Q else (wpgen t2) Q)
end. As pointed out earlier, this definition is not structurally recursive and is thus not accepted by Coq, due to the recursive call wpgen (subst x v t2) Q. Our next step is to fix this issue.
Computing with wpgen
Contexts
The "iterated substitution" operation, written isubst E t, describes the
substitution of all the bindings from a context E into a term t.
Its implementation is standard: the function traverses the term recursively
and, when reaching a variable, performs a lookup in the context E. The
operation needs to take care to respect variable shadowing. To that end,
when traversing a binder for a variable x, all occurrences of x that
might previously exist in E are removed.
The formal definition of isubst involves two auxiliary functions -- lookup
and removal -- on association lists. The definition of the operation
lookup x E on association lists is standard. It returns an option on a
value.
Fixpoint lookup (x:var) (E:ctx) : option val :=
match E with
| nil ⇒ None
| (y,v)::E1 ⇒ if var_eq x y
then Some v
else lookup x E1
end.
match E with
| nil ⇒ None
| (y,v)::E1 ⇒ if var_eq x y
then Some v
else lookup x E1
end.
The definition of the removal operation, written rem x E, is also
standard. It returns a filtered context.
Fixpoint rem (x:var) (E:ctx) : ctx :=
match E with
| nil ⇒ nil
| (y,v)::E1 ⇒
let E1' := rem x E1 in
if var_eq x y then E1' else (y,v)::E1'
end.
match E with
| nil ⇒ nil
| (y,v)::E1 ⇒
let E1' := rem x E1 in
if var_eq x y then E1' else (y,v)::E1'
end.
The definition of the operation isubst E t can then be expressed as a
recursive function over the term t. It invokes lookup x E when it
reaches a variable x. It invokes rem x E when traversing a binding on
the name x.
Fixpoint isubst (E:ctx) (t:trm) : trm :=
match t with
| trm_val v ⇒
v
| trm_var x ⇒
match lookup x E with
| None ⇒ t
| Some v ⇒ v
end
| trm_fun x t1 ⇒
trm_fun x (isubst (rem x E) t1)
| trm_fix f x t1 ⇒
trm_fix f x (isubst (rem x (rem f E)) t1)
| trm_app t1 t2 ⇒
trm_app (isubst E t1) (isubst E t2)
| trm_seq t1 t2 ⇒
trm_seq (isubst E t1) (isubst E t2)
| trm_let x t1 t2 ⇒
trm_let x (isubst E t1) (isubst (rem x E) t2)
| trm_if t0 t1 t2 ⇒
trm_if (isubst E t0) (isubst E t1) (isubst E t2)
end.
match t with
| trm_val v ⇒
v
| trm_var x ⇒
match lookup x E with
| None ⇒ t
| Some v ⇒ v
end
| trm_fun x t1 ⇒
trm_fun x (isubst (rem x E) t1)
| trm_fix f x t1 ⇒
trm_fix f x (isubst (rem x (rem f E)) t1)
| trm_app t1 t2 ⇒
trm_app (isubst E t1) (isubst E t2)
| trm_seq t1 t2 ⇒
trm_seq (isubst E t1) (isubst E t2)
| trm_let x t1 t2 ⇒
trm_let x (isubst E t1) (isubst (rem x E) t2)
| trm_if t0 t1 t2 ⇒
trm_if (isubst E t0) (isubst E t1) (isubst E t2)
end.
Remark: it is also possible to define the substitution by iterating the
unary substitution subst over the list of bindings from E. However, this
alternative approach yields a less efficient function and leads to more
complicated proofs.
We now present the reformulated definition of wpgen E t, case by case.
Throughout these definitions, recall that wpgen E t is interpreted as the
weakest precondition of isubst E t.
The Let-Binding Case
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct (match t with
...
| trm_let x t1 t2 ⇒ fun Q ⇒
(wpgen E t1) (fun v ⇒ wpgen ((x,v)::E) t2)
...
) end.
The Variable Case
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct (match t with
...
| trm_var x ⇒ fun Q ⇒
match lookup x E with
| Some v ⇒ Q v
| None ⇒ \[False]
end
...
) end.
The Application Case
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
..
| trm_app t1 t2 ⇒ fun Q ⇒ ∃ H, H \* \[triple t H Q]
Fixpoint wpgen (t:trm) : formula :=
mkstruct (match t with
...
| trm_app v1 v2 ⇒ fun Q ⇒ ∃ H, H \* \[triple (isubst E t) H Q]
..
The Function Definition Case
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct (match t with
...
| trm_fun x t1 ⇒ fun Q ⇒ Q (val_fun x (isubst (rem x E) t1))
| trm_fix f x t1 ⇒ fun Q ⇒ Q (val_fix f x (isubst (rem x (rem f E)) t1))
...
) end.
At last, we arrive at a definition of wpgen that type-checks in Coq and
that can be used to effectively compute weakest preconditions in Separation
Logic.
Fixpoint wpgen (E:ctx) (t:trm) (Q:val→hprop) : hprop :=
match t with
| trm_val v ⇒ Q v
| trm_fun x t1 ⇒ Q (val_fun x (isubst (rem x E) t1))
| trm_fix f x t1 ⇒ Q (val_fix f x (isubst (rem x (rem f E)) t1))
| trm_seq t1 t2 ⇒ wpgen E t1 (fun v ⇒ wpgen E t2 Q)
| trm_let x t1 t2 ⇒ wpgen E t1 (fun v ⇒ wpgen ((x,v)::E) t2 Q)
| trm_var x ⇒
match lookup x E with
| Some v ⇒ Q v
| None ⇒ \[False]
end
| trm_app v1 v2 ⇒ \∃ H, H \* \[triple (isubst E t) H Q]
| trm_if t0 t1 t2 ⇒
\∃ (b:bool), \[t0 = trm_val (val_bool b)]
\* (if b then (wpgen E t1) Q else (wpgen E t2) Q)
end.
match t with
| trm_val v ⇒ Q v
| trm_fun x t1 ⇒ Q (val_fun x (isubst (rem x E) t1))
| trm_fix f x t1 ⇒ Q (val_fix f x (isubst (rem x (rem f E)) t1))
| trm_seq t1 t2 ⇒ wpgen E t1 (fun v ⇒ wpgen E t2 Q)
| trm_let x t1 t2 ⇒ wpgen E t1 (fun v ⇒ wpgen ((x,v)::E) t2 Q)
| trm_var x ⇒
match lookup x E with
| Some v ⇒ Q v
| None ⇒ \[False]
end
| trm_app v1 v2 ⇒ \∃ H, H \* \[triple (isubst E t) H Q]
| trm_if t0 t1 t2 ⇒
\∃ (b:bool), \[t0 = trm_val (val_bool b)]
\* (if b then (wpgen E t1) Q else (wpgen E t2) Q)
end.
In the next chapter, we will establish the soundness of the wpgen. For the
moment, we simply state the soundness theorem, then explain how it can be
exploited for verifying concrete programs.
The entailment above asserts in particular that we can derive triple t H Q
by proving H ==> wpgen t Q. A useful corollary combines this soundness
theorem with the rule triple_app_fun, which allows establishing triples
for functions.
Recall triple_app_fun from chapter Rules.
Parameter triple_app_fun : ∀ x v1 v2 t1 H Q,
v1 = val_fun x t1 →
triple (subst x v2 t1) H Q →
triple (trm_app v1 v2) H Q.
v1 = val_fun x t1 →
triple (subst x v2 t1) H Q →
triple (trm_app v1 v2) H Q.
Reformulating the rule above into a rule for wpgen takes 3 steps.
First, we rewrite the premise triple (subst x v2 t1) H Q using wp. It
becomes H ==> wp (subst x v2 t1) Q.
Second, we observe that the term subst x v2 t1 is equal to
isubst ((x,v2)::nil) t1. (This equality is captured by the lemma
subst_eq_isubst_one proved in the next chapter.) Thus, the heap predicate
wp (subst x v2 t1) Q is equivalent to wp (isubst ((x,v2)::nil) t1).
Third, according to wpgen_sound, wp (isubst ((x,v2)::nil) t1) is
entailed by wpgen ((x,v2)::nil) t1. Thus, we can use the latter as premise
in place of the former. We thereby obtain the following lemma, which is at
the heart of the implementation of the tactic xwp.
Parameter triple_app_fun_from_wpgen : ∀ v1 v2 x t1 H Q,
v1 = val_fun x t1 →
H ==> wpgen ((x,v2)::nil) t1 Q →
triple (trm_app v1 v2) H Q.
v1 = val_fun x t1 →
H ==> wpgen ((x,v2)::nil) t1 Q →
triple (trm_app v1 v2) H Q.
Let us exploit triple_app_fun_from_wpgen to demonstrate the computation of
wpgen on a practical program. Recall the function incr (defined in
Rules), and its specification below.
Lemma triple_incr : ∀ (p:loc) (n:int),
triple (trm_app incr p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+1)).
Proof using.
intros. applys triple_app_fun_from_wpgen. { reflexivity. }
simpl. (* Read the goal here... *)
Abort.
triple (trm_app incr p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+1)).
Proof using.
intros. applys triple_app_fun_from_wpgen. { reflexivity. }
simpl. (* Read the goal here... *)
Abort.
At the end of the above proof fragment, the goal takes the form H ==> F Q,
where H denotes the precondition, Q the postcondition, and F is a
formula describing the body of the function incr. Inside this formula, the
reader can spot triples for the primitive operations involved. Observe that
the goal is nevertheless somewhat hard to relate to the original program. In
what follows, we explain how to remedy the situation by setting up wpgen
so that its output is human-readable and resembles the original source code.
Consequence and Frame Properties for wpgen
Exercise: 3 stars, standard, especially useful (wpgen_conseq)
Prove that wpgen E t satisfies the same consequence rule as wp t. The statement is directly adapted from wp_conseq, from WPsem. Hint: begin the proof with intros t. induction t..
Lemma wpgen_conseq : ∀ t E Q1 Q2,
Q1 ===> Q2 →
wpgen E t Q1 ==> wpgen E t Q2.
Proof using. (* FILL IN HERE *) Admitted.
☐
Q1 ===> Q2 →
wpgen E t Q1 ==> wpgen E t Q2.
Proof using. (* FILL IN HERE *) Admitted.
☐
Exercise: 4 stars, standard, especially useful (wpgen_frame)
Prove that wpgen E t satisfies the same frame rule as wp t. The statement is directly adapted from wp_frame, from WPsem. The sequence case is not easy.
Lemma wpgen_frame : ∀ t E H Q,
(wpgen E t Q) \* H ==> wpgen E t (Q \*+ H).
Proof using. (* FILL IN HERE *) Admitted.
☐
(wpgen E t Q) \* H ==> wpgen E t (Q \*+ H).
Proof using. (* FILL IN HERE *) Admitted.
☐
Optimizing the Readability of wpgen's Output
- first, we modify the presentation of wpgen so that the fun (Q:val→hprop) ⇒ appears insides the branches of the match t with rather than around it,
- second, we introduce one auxiliary definition for each branch of the match t with, and
- third, we introduce a Notation for each of these auxiliary definitions.
Reability Step 1: Moving the Function below the Branches.
Fixpoint wpgen (E:ctx) (t:trm) (Q:val→hprop) : hprop :=
match t with
| trm_val v ⇒ Q v
| trm_fun x t1 ⇒ Q (val_fun x (isubst (rem x E) t1))
...
end. to the equivalent form:
Fixpoint wpgen (E:ctx) (t:trm) : (val→hprop)->hprop :=
match t with
| trm_val v ⇒ fun (Q:val→hprop) ⇒ Q v
| trm_fun x t1 ⇒ fun (Q:val→hprop) ⇒ Q (val_fun x (isubst (rem x E) t1))
...
end.
Readability Steps 2 and 3 for the Case of Sequences
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
match t with
...
| trm_seq t1 t2 ⇒ fun Q ⇒ (wpgen E t1) (fun v ⇒ wpgen E t2 Q)
...
end. to the equivalent form:
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
match t with
...
| trm_seq t1 t2 ⇒ wpgen_seq (wpgen E t1) (wpgen E t2)
...
end. where wpgen_seq is defined below.
Here, F1 and F2 denote the results of the recursive calls, wpgen E t1
and wpgen E t2, respectively.
With the above definitions, wgpen E (trm_seq t1 t2) evaluates to
wp_seq (wpgen E t1) (wpgen E t2).
Finally, we introduce a piece of notation for each case. For sequence, we
set up the notation defined next to so that any formula of the form
wpgen_seq F1 F2 gets displayed as Seq F1 ; F2 .
Notation "'Seq' F1 ; F2" :=
((wpgen_seq F1 F2))
(at level 68, right associativity,
format "'[v' 'Seq' '[' F1 ']' ';' '/' '[' F2 ']' ']'").
((wpgen_seq F1 F2))
(at level 68, right associativity,
format "'[v' 'Seq' '[' F1 ']' ';' '/' '[' F2 ']' ']'").
Thanks to this notation, the wpgen of a sequence t1 ; t2 displays as
Seq F1 ; F2 where F1 and F2 denote the wpgen of t1 and t2,
respectively. The "format" clause in the notation definition is there only
to improve the pretty-printing of formulae. The semantics of '/' is to
encourage a line break. The semantics of square brackets is to delimit
blocks. The "v" character next to the leading bracket encourages a vertical
alignement of the blocks. Double spaces in the format clause indicate the
need to pretty-print a single space, as opposed to an empty spacing.
Readability Step 2: Auxiliary Definitions for other Constructs
Definition wpgen_val (v:val) : formula := fun Q ⇒
Q v.
Definition wpgen_let (F1:formula) (F2of:val→formula) : formula := fun Q ⇒
F1 (fun v ⇒ F2of v Q).
Definition wpgen_if (t:trm) (F1 F2:formula) : formula := fun Q ⇒
\∃ (b:bool), \[t = trm_val (val_bool b)] \* (if b then F1 Q else F2 Q).
Definition wpgen_fail : formula := fun Q ⇒
\[False].
Definition wpgen_var (E:ctx) (x:var) : formula :=
match lookup x E with
| None ⇒ wpgen_fail
| Some v ⇒ wpgen_val v
end.
Definition wpgen_app (t:trm) : formula := fun Q ⇒
\∃ H, H \* \[triple t H Q].
Q v.
Definition wpgen_let (F1:formula) (F2of:val→formula) : formula := fun Q ⇒
F1 (fun v ⇒ F2of v Q).
Definition wpgen_if (t:trm) (F1 F2:formula) : formula := fun Q ⇒
\∃ (b:bool), \[t = trm_val (val_bool b)] \* (if b then F1 Q else F2 Q).
Definition wpgen_fail : formula := fun Q ⇒
\[False].
Definition wpgen_var (E:ctx) (x:var) : formula :=
match lookup x E with
| None ⇒ wpgen_fail
| Some v ⇒ wpgen_val v
end.
Definition wpgen_app (t:trm) : formula := fun Q ⇒
\∃ H, H \* \[triple t H Q].
The new definition of wpgen reads as follows:
Module WpgenExec2.
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
match t with
| trm_val v ⇒ wpgen_val v
| trm_var x ⇒ wpgen_var E x
| trm_fun x t1 ⇒ wpgen_val (val_fun x (isubst (rem x E) t1))
| trm_fix f x t1 ⇒ wpgen_val (val_fix f x (isubst (rem x (rem f E)) t1))
| trm_app t1 t2 ⇒ wpgen_app (isubst E t)
| trm_seq t1 t2 ⇒ wpgen_seq (wpgen E t1) (wpgen E t2)
| trm_let x t1 t2 ⇒ wpgen_let (wpgen E t1) (fun v ⇒ wpgen ((x,v)::E) t2)
| trm_if t0 t1 t2 ⇒ wpgen_if (isubst E t0) (wpgen E t1) (wpgen E t2)
end.
End WpgenExec2.
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
match t with
| trm_val v ⇒ wpgen_val v
| trm_var x ⇒ wpgen_var E x
| trm_fun x t1 ⇒ wpgen_val (val_fun x (isubst (rem x E) t1))
| trm_fix f x t1 ⇒ wpgen_val (val_fix f x (isubst (rem x (rem f E)) t1))
| trm_app t1 t2 ⇒ wpgen_app (isubst E t)
| trm_seq t1 t2 ⇒ wpgen_seq (wpgen E t1) (wpgen E t2)
| trm_let x t1 t2 ⇒ wpgen_let (wpgen E t1) (fun v ⇒ wpgen ((x,v)::E) t2)
| trm_if t0 t1 t2 ⇒ wpgen_if (isubst E t0) (wpgen E t1) (wpgen E t2)
end.
End WpgenExec2.
Readability Step 3: Notations for Auxiliary Definitions
Declare Scope wpgen_scope.
Notation "'Val' v" :=
((wpgen_val v))
(at level 69) : wpgen_scope.
Notation "'Let' x ':=' F1 'in' F2" :=
((wpgen_let F1 (fun x ⇒ F2)))
(at level 69, x name, right associativity,
format "'[v' '[' 'Let' x ':=' F1 'in' ']' '/' '[' F2 ']' ']'")
: wpgen_scope.
Notation "'If_' b 'Then' F1 'Else' F2" :=
((wpgen_if b F1 F2))
(at level 69) : wpgen_scope.
Notation "'Fail'" :=
((wpgen_fail))
(at level 69) : wpgen_scope.
Notation "'Val' v" :=
((wpgen_val v))
(at level 69) : wpgen_scope.
Notation "'Let' x ':=' F1 'in' F2" :=
((wpgen_let F1 (fun x ⇒ F2)))
(at level 69, x name, right associativity,
format "'[v' '[' 'Let' x ':=' F1 'in' ']' '/' '[' F2 ']' ']'")
: wpgen_scope.
Notation "'If_' b 'Then' F1 'Else' F2" :=
((wpgen_if b F1 F2))
(at level 69) : wpgen_scope.
Notation "'Fail'" :=
((wpgen_fail))
(at level 69) : wpgen_scope.
In addition, we introduce a handy notation for the result of wpgen t where
t denotes an application. (We cover here only functions of arity one or
two. The file LibSepReference.v provides arity-generic definitions.)
Notation "'App' f v1 " :=
((wpgen_app (trm_app f v1)))
(at level 68, f, v1 at level 0) : wpgen_scope.
Notation "'App' f v1 v2 " :=
((wpgen_app (trm_app (trm_app f v1) v2)))
(at level 68, f, v1, v2 at level 0) : wpgen_scope.
((wpgen_app (trm_app f v1)))
(at level 68, f, v1 at level 0) : wpgen_scope.
Notation "'App' f v1 v2 " :=
((wpgen_app (trm_app (trm_app f v1) v2)))
(at level 68, f, v1, v2 at level 0) : wpgen_scope.
Here again, we temporarily axiomatize the soundness result for the purpose
of looking at how that result can be exploited in practice.
Parameter triple_app_fun_from_wpgen : ∀ v1 v2 x t1 H Q,
v1 = val_fun x t1 →
H ==> wpgen ((x,v2)::nil) t1 Q →
triple (trm_app v1 v2) H Q.
v1 = val_fun x t1 →
H ==> wpgen ((x,v2)::nil) t1 Q →
triple (trm_app v1 v2) H Q.
Consider again the example of incr.
Lemma triple_incr : ∀ (p:loc) (n:int),
triple (trm_app incr p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+1)).
Proof using.
intros. applys triple_app_fun_from_wpgen. { reflexivity. }
simpl. (* Read the goal here... It is of the form H ==> F Q,
where F vaguely looks like the code of the body of incr. *)
Abort.
triple (trm_app incr p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+1)).
Proof using.
intros. applys triple_app_fun_from_wpgen. { reflexivity. }
simpl. (* Read the goal here... It is of the form H ==> F Q,
where F vaguely looks like the code of the body of incr. *)
Abort.
Up to whitespace, alpha-renaming, removal of parentheses, and removal of
quotes after Let and If), the formula F reads as:
Let n := App val_get p in
Let m := App (val_add n) 1 in
App (val_set p) m
With the introduction of intermediate definitions for wpgen and the
introduction of associated notations for each term construct, what we have
achieved is that the output of wpgen is, for any input term t, a human-
readable formula whose display closely resembles the source code of t.
Let n := App val_get p in
Let m := App (val_add n) 1 in
App (val_set p) m
Extension of wpgen to Handle Structural Rules
Introduction of mkstruct in the Definition of wpgen
Fixpoint wpgen (E:ctx) (t:trm) : (val→hprop)->hprop :=
mkstruct (
match t with
| trm_val v ⇒ wpgen_val v
...
end). With this definition, any output of wpgen E t is necessarily of the form mkstruct F, for some formula F describing the weakest precondition of t.
Because mkstruct appears between the prototype and the match in the body
of wpgen, it must have type formula→formula.
Next, mkstruct should satisfy reasoning rules that mimic the statements of
the frame rule and the consequence rule in weakest-precondition style
(wp_frame and wp_conseq).
Parameter mkstruct_frame : ∀ (F:formula) H Q,
(mkstruct F Q) \* H ==> mkstruct F (Q \*+ H).
Parameter mkstruct_conseq : ∀ (F:formula) Q1 Q2,
Q1 ===> Q2 →
mkstruct F Q1 ==> mkstruct F Q2.
(mkstruct F Q) \* H ==> mkstruct F (Q \*+ H).
Parameter mkstruct_conseq : ∀ (F:formula) Q1 Q2,
Q1 ===> Q2 →
mkstruct F Q1 ==> mkstruct F Q2.
In addition, the user manipulating a formula produced by wpgen should be
able to discard the predicate mkstruct from the head of the output when
there is no need to apply the frame rule or the rule of consequence. The
erasure property is captured by the following entailment.
Moreover, in order to complete the soundness proof for wpgen, the
predicate mkstruct should be covariant: if F1 entails F2, then
mkstruct F1 should entail mkstruct F2.
Parameter mkstruct_monotone : ∀ F1 F2 Q,
(∀ Q, F1 Q ==> F2 Q) →
mkstruct F1 Q ==> mkstruct F2 Q.
End MkstructProp.
(∀ Q, F1 Q ==> F2 Q) →
mkstruct F1 Q ==> mkstruct F2 Q.
End MkstructProp.
Realization of mkstruct
The magic wand may appear somewhat puzzling, but the above statement is
reminiscent from the statement of wp_ramified, which captures the
expressive power of all the structural reasoning rules of Separation Logic
at once. If we unfold the definition of the magic wand, we can see more
clearly that mkstruct F is a formula that describes a program that
produces a postcondition Q when executed in the current state if and only
if the formula F describes a program that produces a postcondtion Q1 in
a subset of the current state and if the postcondition Q1 augmented with
the remainder of the current state (i.e., the piece described by H)
corresponds to the postcondition Q.
Definition mkstruct' (F:formula) : formula :=
fun (Q:val→hprop) ⇒ \∃ Q1 H, F Q1 \* H \* \[Q1 \*+ H ===> Q].
fun (Q:val→hprop) ⇒ \∃ Q1 H, F Q1 \* H \* \[Q1 \*+ H ===> Q].
The four properties of mkstruct can be easily verified.
Lemma mkstruct_frame : ∀ F H Q,
(mkstruct F Q) \* H ==> mkstruct F (Q \*+ H).
Proof using. intros. unfold mkstruct. xpull. intros Q'. xsimpl*. Qed.
Lemma mkstruct_conseq : ∀ F Q1 Q2,
Q1 ===> Q2 →
mkstruct F Q1 ==> mkstruct F Q2.
Proof using. introv WQ. unfold mkstruct. xpull. intros Q'. xsimpl*. Qed.
Lemma mkstruct_erase : ∀ F Q,
F Q ==> mkstruct F Q.
Proof using. intros. unfold mkstruct. xsimpl. Qed.
Lemma mkstruct_monotone : ∀ F1 F2 Q,
(∀ Q, F1 Q ==> F2 Q) →
mkstruct F1 Q ==> mkstruct F2 Q.
Proof using. introv WF. unfolds mkstruct. xpull. intros Q'. xchanges WF. Qed.
(mkstruct F Q) \* H ==> mkstruct F (Q \*+ H).
Proof using. intros. unfold mkstruct. xpull. intros Q'. xsimpl*. Qed.
Lemma mkstruct_conseq : ∀ F Q1 Q2,
Q1 ===> Q2 →
mkstruct F Q1 ==> mkstruct F Q2.
Proof using. introv WQ. unfold mkstruct. xpull. intros Q'. xsimpl*. Qed.
Lemma mkstruct_erase : ∀ F Q,
F Q ==> mkstruct F Q.
Proof using. intros. unfold mkstruct. xsimpl. Qed.
Lemma mkstruct_monotone : ∀ F1 F2 Q,
(∀ Q, F1 Q ==> F2 Q) →
mkstruct F1 Q ==> mkstruct F2 Q.
Proof using. introv WF. unfolds mkstruct. xpull. intros Q'. xchanges WF. Qed.
Definition of wpgen with mkstruct
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct (match t with
| trm_val v ⇒ wpgen_val v
| trm_var x ⇒ wpgen_var E x
| trm_fun x t1 ⇒ wpgen_val (val_fun x (isubst (rem x E) t1))
| trm_fix f x t1 ⇒ wpgen_val (val_fix f x (isubst (rem x (rem f E)) t1))
| trm_app t1 t2 ⇒ wpgen_app (isubst E t)
| trm_seq t1 t2 ⇒ wpgen_seq (wpgen E t1) (wpgen E t2)
| trm_let x t1 t2 ⇒ wpgen_let (wpgen E t1) (fun v ⇒ wpgen ((x,v)::E) t2)
| trm_if t0 t1 t2 ⇒ wpgen_if (isubst E t0) (wpgen E t1) (wpgen E t2)
end).
mkstruct (match t with
| trm_val v ⇒ wpgen_val v
| trm_var x ⇒ wpgen_var E x
| trm_fun x t1 ⇒ wpgen_val (val_fun x (isubst (rem x E) t1))
| trm_fix f x t1 ⇒ wpgen_val (val_fix f x (isubst (rem x (rem f E)) t1))
| trm_app t1 t2 ⇒ wpgen_app (isubst E t)
| trm_seq t1 t2 ⇒ wpgen_seq (wpgen E t1) (wpgen E t2)
| trm_let x t1 t2 ⇒ wpgen_let (wpgen E t1) (fun v ⇒ wpgen ((x,v)::E) t2)
| trm_if t0 t1 t2 ⇒ wpgen_if (isubst E t0) (wpgen E t1) (wpgen E t2)
end).
To avoid clutter in reading the output of wpgen, we introduce a
lightweight shorthand to denote mkstruct F, allowing it to display simply
as `F.
Once again, we temporarily axiomatize the soundness result for the purpose
of looking at how that result can be exploited in practice.
Parameter triple_app_fun_from_wpgen : ∀ v1 v2 x t1 H Q,
v1 = val_fun x t1 →
H ==> wpgen ((x,v2)::nil) t1 Q →
triple (trm_app v1 v2) H Q.
v1 = val_fun x t1 →
H ==> wpgen ((x,v2)::nil) t1 Q →
triple (trm_app v1 v2) H Q.
X-lemmas for Implementing X-tactics
Lemma xstruct_lemma : ∀ F H Q,
H ==> F Q →
H ==> mkstruct F Q.
Proof using. introv M. xchange M. applys mkstruct_erase. Qed.
H ==> F Q →
H ==> mkstruct F Q.
Proof using. introv M. xchange M. applys mkstruct_erase. Qed.
xval_lemma reformulates the definition of wpgen_val. It just unfolds the
definition.
xlet_lemma reformulates the definition of wpgen_let. It just unfolds the
definition.
Lemma xlet_lemma : ∀ H F1 F2of Q,
H ==> F1 (fun v ⇒ F2of v Q) →
H ==> wpgen_let F1 F2of Q.
Proof using. introv M. xchange M. Qed.
H ==> F1 (fun v ⇒ F2of v Q) →
H ==> wpgen_let F1 F2of Q.
Proof using. introv M. xchange M. Qed.
Likewise, xseq_lemma reformulates wpgen_seq.
Lemma xseq_lemma : ∀ H F1 F2 Q,
H ==> F1 (fun v ⇒ F2 Q) →
H ==> wpgen_seq F1 F2 Q.
Proof using. introv M. xchange M. Qed.
H ==> F1 (fun v ⇒ F2 Q) →
H ==> wpgen_seq F1 F2 Q.
Proof using. introv M. xchange M. Qed.
xapp_lemma applies to goals produced by wpgen on an application. In such
cases, the proof obligation is of the form H ==> (wpgen_app t) Q.
xapp_lemma reformulates the frame-consequence rule in a way that enables
exploiting a specification triple for a function to reason about a call to
that function.
Lemma xapp_lemma : ∀ t Q1 H1 H2 H Q,
triple t H1 Q1 →
H ==> H1 \* H2 →
Q1 \*+ H2 ===> Q →
H ==> wpgen_app t Q.
Proof using.
introv M WH WQ. unfold wpgen_app. xsimpl. applys* triple_conseq_frame M.
Qed.
triple t H1 Q1 →
H ==> H1 \* H2 →
Q1 \*+ H2 ===> Q →
H ==> wpgen_app t Q.
Proof using.
introv M WH WQ. unfold wpgen_app. xsimpl. applys* triple_conseq_frame M.
Qed.
xwp_lemma is another name for triple_app_fun_from_wpgen. It is used for
establishing a triple for a function application.
Lemma xwp_lemma : ∀ v1 v2 x t1 H Q,
v1 = val_fun x t1 →
H ==> wpgen ((x,v2)::nil) t1 Q →
triple (trm_app v1 v2) H Q.
Proof using. introv M1 M2. applys* triple_app_fun_from_wpgen. Qed.
v1 = val_fun x t1 →
H ==> wpgen ((x,v2)::nil) t1 Q →
triple (trm_app v1 v2) H Q.
Proof using. introv M1 M2. applys* triple_app_fun_from_wpgen. Qed.
Example Proofs using X-lemmas
Module ProofsWithXlemmas.
Import ExamplePrograms.
Open Scope wpgen_scope.
Lemma triple_incr : ∀ (p:loc) (n:int),
triple (trm_app incr p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+1)).
Proof using.
intros.
applys xwp_lemma. { reflexivity. }
(* Here the wpgen function computes. *)
simpl.
(* Observe how each node begin with mkstruct.
Observe how program variables are all eliminated. *)
applys xstruct_lemma.
applys xlet_lemma.
applys xstruct_lemma.
applys xapp_lemma. { apply triple_get. } { xsimpl. }
xpull; intros ? →.
applys xstruct_lemma.
applys xlet_lemma.
applys xstruct_lemma.
applys xapp_lemma. { apply triple_add. } { xsimpl. }
xpull; intros ? →.
applys xstruct_lemma.
applys xapp_lemma. { apply triple_set. } { xsimpl. }
xsimpl.
Qed.
Import ExamplePrograms.
Open Scope wpgen_scope.
Lemma triple_incr : ∀ (p:loc) (n:int),
triple (trm_app incr p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+1)).
Proof using.
intros.
applys xwp_lemma. { reflexivity. }
(* Here the wpgen function computes. *)
simpl.
(* Observe how each node begin with mkstruct.
Observe how program variables are all eliminated. *)
applys xstruct_lemma.
applys xlet_lemma.
applys xstruct_lemma.
applys xapp_lemma. { apply triple_get. } { xsimpl. }
xpull; intros ? →.
applys xstruct_lemma.
applys xlet_lemma.
applys xstruct_lemma.
applys xapp_lemma. { apply triple_add. } { xsimpl. }
xpull; intros ? →.
applys xstruct_lemma.
applys xapp_lemma. { apply triple_set. } { xsimpl. }
xsimpl.
Qed.
Exercise: 2 stars, standard, especially useful (triple_succ_using_incr_with_xlemmas)
Using x-lemmas, simplify the proof of triple_succ_using_incr, which was carried out using triples in chapter Rules.
Lemma triple_succ_using_incr_with_xlemmas : ∀ (n:int),
triple (trm_app succ_using_incr n)
\[]
(fun v ⇒ \[v = n+1]).
Proof using. (* FILL IN HERE *) Admitted.
☐
triple (trm_app succ_using_incr n)
\[]
(fun v ⇒ \[v = n+1]).
Proof using. (* FILL IN HERE *) Admitted.
☐
Definition of X-tactics
The tactics xval, xseq and xlet invoke the corresponding x-lemmas,
after calling xstruct if a leading mkstruct is in the way.
Tactic Notation "xstruct_if_needed" :=
try match goal with ⊢ ?H ==> mkstruct ?F ?Q ⇒ xstruct end.
Tactic Notation "xval" :=
xstruct_if_needed; applys xval_lemma.
Tactic Notation "xlet" :=
xstruct_if_needed; applys xlet_lemma.
Tactic Notation "xseq" :=
xstruct_if_needed; applys xseq_lemma.
try match goal with ⊢ ?H ==> mkstruct ?F ?Q ⇒ xstruct end.
Tactic Notation "xval" :=
xstruct_if_needed; applys xval_lemma.
Tactic Notation "xlet" :=
xstruct_if_needed; applys xlet_lemma.
Tactic Notation "xseq" :=
xstruct_if_needed; applys xseq_lemma.
xapp_nosubst applys xapp_lemma, after calling xseq or xlet if
applicable. Further on, we will define xapp as an enhanced version of
xapp_nosubst that is able to automatically perform substitutions.
Tactic Notation "xseq_xlet_if_needed" :=
try match goal with ⊢ ?H ==> mkstruct ?F ?Q ⇒
match F with
| wpgen_seq ?F1 ?F2 ⇒ xseq
| wpgen_let ?F1 ?F2of ⇒ xlet
end end.
Tactic Notation "xapp_nosubst" constr(E) :=
xseq_xlet_if_needed; xstruct_if_needed;
applys xapp_lemma E; [ xsimpl | xpull ].
try match goal with ⊢ ?H ==> mkstruct ?F ?Q ⇒
match F with
| wpgen_seq ?F1 ?F2 ⇒ xseq
| wpgen_let ?F1 ?F2of ⇒ xlet
end end.
Tactic Notation "xapp_nosubst" constr(E) :=
xseq_xlet_if_needed; xstruct_if_needed;
applys xapp_lemma E; [ xsimpl | xpull ].
xwp applys xwp_lemma, then requests Coq to evaluate the wpgen
function. (For technical reasons, in the definition shown below we need to
explicitly request the unfolding of wpgen_var.)
Tactic Notation "xwp" :=
intros; applys xwp_lemma;
[ first [ reflexivity | eassumption ]
| simpl; unfold wpgen_var; simpl ].
intros; applys xwp_lemma;
[ first [ reflexivity | eassumption ]
| simpl; unfold wpgen_var; simpl ].
Now let us revisit the previous proof scripts using x-tactics instead of
x-lemmas. The reader is invited to contemplate the gain in conciseness.
Module ProofsWithXtactics.
Import ExamplePrograms.
Open Scope wpgen_scope.
Lemma triple_incr : ∀ (p:loc) (n:int),
triple (trm_app incr p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+1)).
Proof using.
xwp.
xapp_nosubst triple_get. intros ? →.
xapp_nosubst triple_add. intros ? →.
xapp_nosubst triple_set.
xsimpl.
Qed.
Import ExamplePrograms.
Open Scope wpgen_scope.
Lemma triple_incr : ∀ (p:loc) (n:int),
triple (trm_app incr p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+1)).
Proof using.
xwp.
xapp_nosubst triple_get. intros ? →.
xapp_nosubst triple_add. intros ? →.
xapp_nosubst triple_set.
xsimpl.
Qed.
Exercise: 2 stars, standard, especially useful (triple_succ_using_incr_with_xtactics)
Using x-tactics, prove succ_using_incr.
Lemma triple_succ_using_incr_with_xtactics : ∀ (n:int),
triple (trm_app succ_using_incr n)
\[]
(fun v ⇒ \[v = n+1]).
Proof using. (* FILL IN HERE *) Admitted.
☐
triple (trm_app succ_using_incr n)
\[]
(fun v ⇒ \[v = n+1]).
Proof using. (* FILL IN HERE *) Admitted.
☐
Improved Postprocessing for xapp.
Tactic Notation "xapp_try_subst" := (* for internal use only *)
try match goal with
| ⊢ ∀ (r:val), (r = _) → _ ⇒ intros ? →
| ⊢ ∀ (r:val), ∀ x, (r = _) → _ ⇒
let y := fresh x in intros ? y ->; revert y
end.
Tactic Notation "xapp" constr(E) :=
xapp_nosubst E; xapp_try_subst.
try match goal with
| ⊢ ∀ (r:val), (r = _) → _ ⇒ intros ? →
| ⊢ ∀ (r:val), ∀ x, (r = _) → _ ⇒
let y := fresh x in intros ? y ->; revert y
end.
Tactic Notation "xapp" constr(E) :=
xapp_nosubst E; xapp_try_subst.
Database of Specification Lemmas for the xapp Tactic.
#[global] Hint Resolve triple_get triple_set triple_ref
triple_free triple_add : triple.
triple_free triple_add : triple.
The argument-free variants xapp_subst and xapp are implemented by
invoking eauto with triple to retrieve the relevant specification.
One shortcoming of the version of the xapp tactic that leverages the
triple database is that it is not able to automatically apply
specifications that involve a premise that eauto cannot solve. To exploit
such specifications, we need to provide the specification explicitly using
xapp E. This tactic is defined in LibSepReference.v. Its implementation
is a bit technical, we do not describe it here.
Tactic Notation "xapp_nosubst" :=
xseq_xlet_if_needed; xstruct_if_needed;
applys xapp_lemma; [ solve [ eauto with triple ] | xsimpl | xpull ].
Tactic Notation "xapp" :=
xapp_nosubst; xapp_try_subst.
xseq_xlet_if_needed; xstruct_if_needed;
applys xapp_lemma; [ solve [ eauto with triple ] | xsimpl | xpull ].
Tactic Notation "xapp" :=
xapp_nosubst; xapp_try_subst.
The tactics defined in the previous sections may be used to complete proofs
like done in the first two chapters of the course. For example, here is the
proof of the increment function.
Lemma triple_incr : ∀ (p:loc) (n:int),
triple (trm_app incr p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+1)).
Proof using.
xwp. xapp. xapp. xapp. xsimpl.
Qed.
#[global] Hint Resolve triple_incr : triple.
triple (trm_app incr p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+1)).
Proof using.
xwp. xapp. xapp. xapp. xsimpl.
Qed.
#[global] Hint Resolve triple_incr : triple.
In summary, we have shown how to leverage wpgen, x-lemmas and x-tactics to
implement the core of a practical verification framework based on Separation
Logic.
Consider the following program, which defines a local function named f for
incrementing a reference cell p, then invokes f() twice. The purpose of
this example is to illustrate how to reason about a local function.
fun p →
let f = (fun () → incr p) in
f();
f()
let f = (fun () → incr p) in
f();
f()
There are two possible approaches to reasoning about this code.
In the first approach, we store the hypothesis capturing that f has for
code fun () → incr p, and each time we encounter a call to f, we
"inline" the code of f at the call site. This approach is very effective
when f has a unique occurrence. However, if f has multiple occurrences,
then the user has to reason several times about the same code pattern.
The second approach yields a modular proof. When reasoning about the
definition of f, we assert and prove a specification for f, then
immediately discard any information revealing what the code of f is. Then,
each time we encounter a call to f, we use xapp to leverage the
specification of the local function f, exactly like we have been doing
everywhere for reasoning about calls to top-level functions.
Let us illustrate the two approaches, and introduce on the way a few
additional x-tactics relevant for local functions.
1. Reasoning about Local Functions by Inlining
Lemma triple_incrtwice_using_xval : ∀ (p:loc) (n:int),
triple (incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp.
triple (incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp.
At this point, we have the formula for the body of the function incrtwice,
which binds (under the name v) the value fun {"u"} ⇒ {incr p}.
xlet.
By typing xlet, we focus on this value fun {"u"} ⇒ {incr p}. The tactic
xval then substitutes this value throughout the remaining of the formula.
xval.
Because the body of incrtwice contains two calls to the local function
f, the resulting formula contains two copies of the function
fun {"u"} ⇒ {incr p}. This kind of duplication, in general, is
problematic, because the size of the formulae grow significantly.
Abort.
We therefore introduce a variant of the xlet tactic, called xletval,
that processes let-bindings by introducing an equality in the Coq context.
For example, for our local function f, a fresh hypothesis named f of
type val is introduced, and an hypothesis of type asserting that f is
equal to fun {"u"} ⇒ {incr p} is provided to characterize the value f.
Let us first defined the tactic xval, then illustrate its usage.
The tactic xletval applies to formulae arising from terms of the form
let x = v1 in t2. It processes the binding let x = v1 by introducing in
the goal a universal quantification over a variable x and over an
hypothesis of type x = v1.
Lemma xletval_lemma : ∀ H v1 F2of Q,
(∀ x, x = v1 → H ==> F2of x Q) →
H ==> wpgen_let (mkstruct (wpgen_val v1)) F2of Q.
Proof using.
introv M. applys xlet_lemma. apply xstruct_lemma.
apply xval_lemma. applys* M.
Qed.
Tactic Notation "xletval" :=
xstruct_if_needed; applys xletval_lemma.
Lemma triple_incrtwice_using_xletval : ∀ (p:loc) (n:int),
triple (incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp. xletval. intros f Hf.
(∀ x, x = v1 → H ==> F2of x Q) →
H ==> wpgen_let (mkstruct (wpgen_val v1)) F2of Q.
Proof using.
introv M. applys xlet_lemma. apply xstruct_lemma.
apply xval_lemma. applys* M.
Qed.
Tactic Notation "xletval" :=
xstruct_if_needed; applys xletval_lemma.
Lemma triple_incrtwice_using_xletval : ∀ (p:loc) (n:int),
triple (incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp. xletval. intros f Hf.
As announced, reasoning about the local function definition using xletval
introduces a name f and an hypothesis Hf of type
f = <{ fun {"u"} ⇒ {incr p} }> There remains to reason about calls to the function f. Let us first show
how it could be done step by step. We will subsequently define a tactic,
named xappfun, to improve conciseness. To reason about the remaining of
the code of incrtwice, we begin by focusing on the first call to f(),
using xseq.
xseq.
At this stage, we can remove the leading mkstruct, unfold the definition
of wgpgen_app, and simplify the resulting statement using xsimpl.
We are left with proving that f() admits a certain behaviour, under the
hypothesis that the code of f is fun {"u"} ⇒ {incr p}. We can make
progress by invoking the tactic xwp, exactly as we do for reasoning about
top-level functions.
xwp.
There remains to reason about the code from the body of the function f,
that is, the instruction incr p. We can use xapp for that purpose.
xapp.
We could similarly handle the second call to f, then complete the proof.
Let us show how to do so in the next lemma, after introducing a tactic to
factorize the proof pattern for reasoning about calls to local functions.
Abort.
The tactic xappfun applies to formulae arising from function calls of the
form f v where f is a local function previously handled using xletval.
Essentially, this tactic inline the formula associated with the body of f,
specializing the body to the argument v.
Lemma xappfun_lemma : ∀ t H Q,
triple t H Q →
H ==> wpgen_app t Q.
Proof using. introv M. unfold wpgen_app. xsimpl*. Qed.
Tactic Notation "xappfun" :=
xseq_xlet_if_needed; xstruct_if_needed; applys xappfun_lemma; xwp.
triple t H Q →
H ==> wpgen_app t Q.
Proof using. introv M. unfold wpgen_app. xsimpl*. Qed.
Tactic Notation "xappfun" :=
xseq_xlet_if_needed; xstruct_if_needed; applys xappfun_lemma; xwp.
Let us revisit the previous proof using this new tactic xappfun.
Lemma triple_incrtwice_using_xletva_and_xapp_fun : ∀ (p:loc) (n:int),
triple (incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp.
xletval. intros f Hf. (* Reason about the definition of f. *)
xappfun. (* Reason about the 1st call to f. *)
xapp. (* Reason about the call to incr triggered by the 1st call to f. *)
xappfun. (* Reason about the 2nd call to f. *)
xapp. (* Reason about the call to incr triggered by the 2nd call to f. *)
xsimpl. math. (* Conclude the proof. *)
Qed.
triple (incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp.
xletval. intros f Hf. (* Reason about the definition of f. *)
xappfun. (* Reason about the 1st call to f. *)
xapp. (* Reason about the call to incr triggered by the 1st call to f. *)
xappfun. (* Reason about the 2nd call to f. *)
xapp. (* Reason about the call to incr triggered by the 2nd call to f. *)
xsimpl. math. (* Conclude the proof. *)
Qed.
This completes the presentation of the first approach. As illustrated in the
example proof above, reasoning twice about the body of the function f
leads to some duplication. The second approach shows how to avoid
duplication, by stating and proving a specification for f.
2. Reasoning about Local Functions Modularly
Lemma triple_incrtwice_with_assert : ∀ (p:loc) (n:int),
triple (incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
triple (incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
We begin the proof like the previous one.
xwp. xletval. intros f Hf.
As soon as f is introduced, we assert the specification of this function.
To establish this specification, we inline the code of f. This is the one
and only place where we inline the code of f.
intros. subst f.
Then, we complete the verification of f as usual.
xwp. xapp. xsimpl. }
We have introduced an hypothesis Sf that characterizes the behavior of f
by means of a triple. We can drop the hypothesis about the code of f.
clear Hf.
The remaining of the proof now proceeds just like if f was a top-level
function, using xapp for reasoning about each call to f.
xapp.
xapp.
xsimpl.
math.
Qed.
xapp.
xsimpl.
math.
Qed.
The tactic xfun applies to a formula arising from terms of the form
let f = (fun x → t1) in t2. This tactic simulates the invokation of
assert over the desired specification for f. The tactic xfun takes as
argument the desired specification for the function. For example, in the
proof of incrtwice we will use a call of the form:
xfun (fun f ⇒ ∀ (m:int),
triple <{ f () }> (p ~~> m) (fun _ ⇒ p ~~> (m+1)))
xfun (fun f ⇒ ∀ (m:int),
triple <{ f () }> (p ~~> m) (fun _ ⇒ p ~~> (m+1)))
Lemma xfun_lemma : ∀ (Sof:val→Prop) H v1 F2of Q,
Sof v1 →
(∀ x, Sof x → H ==> F2of x Q) →
H ==> wpgen_let (mkstruct (wpgen_val v1)) F2of Q.
Proof using. introv Sf M. applys xletval_lemma. intros ? →. applys* M. Qed.
Tactic Notation "xfun" constr(Sof) :=
let f := fresh in let Hf := fresh in
xstruct_if_needed; applys (@xfun_lemma Sof).
Sof v1 →
(∀ x, Sof x → H ==> F2of x Q) →
H ==> wpgen_let (mkstruct (wpgen_val v1)) F2of Q.
Proof using. introv Sf M. applys xletval_lemma. intros ? →. applys* M. Qed.
Tactic Notation "xfun" constr(Sof) :=
let f := fresh in let Hf := fresh in
xstruct_if_needed; applys (@xfun_lemma Sof).
We are ready, at last, to show an elegant proof script for incrtwice.
Lemma triple_incrtwice_with_xfun : ∀ (p:loc) (n:int),
triple (incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp.
triple (incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp.
The key step is to invoke xfun by providing the desired specification for
the local function f.
The verification of the local function f is similar to that of any
top-level function.
{ xwp. xapp. xsimpl. }
There remains to assign a name to the function and its specification.
intros f Sf.
The rest of the proof is the same as before.
xapp.
xapp.
xsimpl.
math.
Qed.
xapp.
xsimpl.
math.
Qed.
In summary, we have presented the tactic xfun for reasoning about local
functions using the exact same mechanisms as for reasoning about top-level
functions. The only difference is that the specification is not provided by
the user as a lemma, but as an argument to xfun. Using the tactic xfun
leads to modular proofs, whereby the body of the local function is only
processed once by the user.
3. Exercises on Local Functions
let f = (fun m → m + 1) in
let a = f 2 in
f a
Definition succtwice : val :=
<{ fun 'n ⇒
let 'f = (fun_ 'm ⇒ 'm + 1) in
let 'a = 'f 'n in
'f 'a }>.
<{ fun 'n ⇒
let 'f = (fun_ 'm ⇒ 'm + 1) in
let 'a = 'f 'n in
'f 'a }>.
Exercise: 2 stars, standard, optional (triple_succtwice_using_xletval)
Verify the function succtwice using xletval and xappfun, without using xfun.
Lemma triple_succtwice_using_xletval : ∀ (n:int),
triple (succtwice n)
\[]
(fun r ⇒ \[r = n + 2]).
Proof using. (* FILL IN HERE *) Admitted.
☐
triple (succtwice n)
\[]
(fun r ⇒ \[r = n + 2]).
Proof using. (* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, standard, optional (triple_succtwice_using_xfun)
Verify the function succtwice using xfun.
Lemma triple_succtwice_using_xfun : ∀ (n:int),
triple (succtwice n)
\[]
(fun r ⇒ \[r = n + 2]).
Proof using. (* FILL IN HERE *) Admitted.
☐
triple (succtwice n)
\[]
(fun r ⇒ \[r = n + 2]).
Proof using. (* FILL IN HERE *) Admitted.
☐
Proof Structure and Proof Automation
xapp. { prove_side_1_1. } { prove_side_1_2. }
xapp. { prove_side_2_1. } { prove_side_2_2. } { prove_side_2_3. }
xapp. { prove_side_3_1. } { prove_side_3_2. } { prove_side_3_3. }
xgo. { prove_side_1_1. } { prove_side_1_2. }
{ prove_side_2_1. } { prove_side_2_2. } { prove_side_2_3. }
{ prove_side_3_1. } { prove_side_3_2. } { prove_side_3_3. }
Additional Tactics xconseq and xframe
Proof using. (* FILL IN HERE *) Admitted.
☐
☐
Tactic Notation "xconseq" :=
applys xconseq_lemma.
Tactic Notation "xconseq" constr(Q) :=
applys xconseq_lemma Q.
applys xconseq_lemma.
Tactic Notation "xconseq" constr(Q) :=
applys xconseq_lemma Q.
The tactic xframe enables applying the frame rule on a formula produced by
wpgen. The syntax xframe H is used to specify the heap predicate to
keep, and the syntax xframe_out H is used to specify the heap predicate to
frame out---everything else is kept.
Lemma xframe_lemma : ∀ H1 H2 H Q Q1 F,
H ==> H1 \* H2 →
H1 ==> mkstruct F Q1 →
Q1 \*+ H2 ===> Q →
H ==> mkstruct F Q.
H ==> H1 \* H2 →
H1 ==> mkstruct F Q1 →
Q1 \*+ H2 ===> Q →
H ==> mkstruct F Q.
Exercise: 2 stars, standard, optional (xframe_lemma)
Prove the xframe_lemma. Exploit the properties of mkstruct; do not try to unfold the definition of mkstruct.
Proof using. (* FILL IN HERE *) Admitted.
☐
☐
Tactic Notation "xframe" constr(H) :=
eapply (@xframe_lemma H); [ xsimpl | | ].
Tactic Notation "xframe_out" constr(H) :=
eapply (@xframe_lemma _ H); [ xsimpl | | ].
eapply (@xframe_lemma H); [ xsimpl | | ].
Tactic Notation "xframe_out" constr(H) :=
eapply (@xframe_lemma _ H); [ xsimpl | | ].
Let's illustrate the use of xframe on an example.
Module ProofsWithStructuralXtactics.
Import ExamplePrograms.
Open Scope wpgen_scope.
Lemma triple_incr_frame : ∀ (p q:loc) (n m:int),
triple (trm_app incr p)
(p ~~> n \* q ~~> m)
(fun _ ⇒ (p ~~> (n+1)) \* (q ~~> m)).
Proof using.
xwp.
Import ExamplePrograms.
Open Scope wpgen_scope.
Lemma triple_incr_frame : ∀ (p q:loc) (n m:int),
triple (trm_app incr p)
(p ~~> n \* q ~~> m)
(fun _ ⇒ (p ~~> (n+1)) \* (q ~~> m)).
Proof using.
xwp.
Instead of calling xapp, we put aside q ~~> m and focus on p ~~> n.
Then we can work in a smaller state that mentions only p ~~> n.
xapp. xapp. xapp.
Finally we check the check that the current state augmented with the framed
predicate q ~~> m matches with the claimed postcondition.
1. Motivation for wpgen to Recurse in Local Functions
Fixpoint wpgen (t:trm) (Q:val→hprop) : hprop :=
match t with
| trm_val v ⇒ Q v
| trm_fun x t1 ⇒ Q (val_fun x t1)
| trm_fix f x t1 ⇒ Q (val_fix f x t1)
...
end. This section explains how to extend the definition of wpgen to make it recurse inside the body of the function definitions. Doing so does not increase expressiveness, because the user had the possibility of manually requesting the computation of wpgen on a function value of the form val_fun or val_fix. However, having wpgen automatically recurse into function bodies simplifies and improves the efficiency of the implementation of the xfun tactic.
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct match t with
| trm_val v ⇒ wpgen_val v
| trm_fun x t1 ⇒ wpgen_fun (fun vx ⇒ wpgen ((x,vx)::E) t1)
| trm_fix f x t1 ⇒ wpgen_fix (fun vf vx ⇒ wpgen ((f,vf)::(x,vx)::E) t1)
...
end.
2. A New Definition of wpgen that Recurses in Local Functions
Parameter triple_app_fun_from_wpgen : ∀ vf vx x t1 H' Q',
vf = val_fun x t1 →
H' ==> wpgen ((x,vx)::nil) t1 Q' →
triple (trm_app vf vx) H' Q'.
vf = val_fun x t1 →
H' ==> wpgen ((x,vx)::nil) t1 Q' →
triple (trm_app vf vx) H' Q'.
The lemma above enables establishing a triple for an application
trm_app vf vx with precondition H' and postcondition Q', from the
premise H' ==> wgen ((x,vx)::nil) t1 Q'.
It therefore makes sense, in our definition of the predicate
wpgen (trm_fun x t1) Q, which we said would take the form
\∀ vf, \[P vf] \−∗ Q vf, to define P vf as:
∀ vx H' Q', (H' ==> wpgen ((x,vx)::nil) t1 Q') →
triple (trm_app vf vx) H' Q' Overall, the definition of wpgen E t is as follows. Note that the occurence of nil is replaced with E to account for the case of a nonempty context.
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct match t with
...
| trm_fun x t1 ⇒ fun Q ⇒
let P vf :=
(∀ vx H' Q',
H' ==> wpgen ((x,vx)::E) t1 Q' →
triple (trm_app vf vx) H' Q') in
\∀ vf, \[P vf] \−∗ Q vf
...
end.
The actual definition of wpgen exploits an intermediate definition called
wpgen_fun, as shown below:
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct match t with
...
| trm_fun x t1 ⇒ wpgen_fun (fun vx ⇒ wpgen ((x,vx)::E) t1)
...
end. where wpgen_fun could be defined as follows:
∀ vx H' Q', (H' ==> wpgen ((x,vx)::nil) t1 Q') →
triple (trm_app vf vx) H' Q' Overall, the definition of wpgen E t is as follows. Note that the occurence of nil is replaced with E to account for the case of a nonempty context.
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct match t with
...
| trm_fun x t1 ⇒ fun Q ⇒
let P vf :=
(∀ vx H' Q',
H' ==> wpgen ((x,vx)::E) t1 Q' →
triple (trm_app vf vx) H' Q') in
\∀ vf, \[P vf] \−∗ Q vf
...
end.
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct match t with
...
| trm_fun x t1 ⇒ wpgen_fun (fun vx ⇒ wpgen ((x,vx)::E) t1)
...
end. where wpgen_fun could be defined as follows:
Definition wpgen_fun' (Fof:val→formula) : formula := fun Q ⇒
\∀ vf, \[∀ vx H' Q',
H' ==> Fof vx Q' →
triple (trm_app vf vx) H' Q']
\−∗ Q vf.
\∀ vf, \[∀ vx H' Q',
H' ==> Fof vx Q' →
triple (trm_app vf vx) H' Q']
\−∗ Q vf.
In the definition above, the assumption about vf, enclosed above in
brackets, can be slightly simplfied, by using wp instead of triple,
allowing to eliminate H'. This observation leads to a more concise
definition of wpgen_fun.
Definition wpgen_fun (Fof:val→formula) : formula := fun Q ⇒
\∀ vf, \[∀ vx Q', Fof vx Q' ==> wp (trm_app vf vx) Q'] \−∗ Q vf.
\∀ vf, \[∀ vx Q', Fof vx Q' ==> wp (trm_app vf vx) Q'] \−∗ Q vf.
Exercise: 2 stars, standard, optional (wpgen_fun_eq)
Prove that wpgen_fun' is equivalent to wpgen_fun.
Lemma wpgen_fun_eq :
wpgen_fun = wpgen_fun'.
Proof using.
unfold wpgen_fun, wpgen_fun'. applys fun_ext_2.
intros Fof Q. applys himpl_antisym.
{ applys himpl_hforall_r. intros vf. xchange (hforall_specialize vf).
xsimpl. intros M. rewrite hwand_hpure_l. xsimpl.
introv. rewrite wp_equiv. applys M. xsimpl. }
(* FILL IN HERE *) Admitted.
☐
wpgen_fun = wpgen_fun'.
Proof using.
unfold wpgen_fun, wpgen_fun'. applys fun_ext_2.
intros Fof Q. applys himpl_antisym.
{ applys himpl_hforall_r. intros vf. xchange (hforall_specialize vf).
xsimpl. intros M. rewrite hwand_hpure_l. xsimpl.
introv. rewrite wp_equiv. applys M. xsimpl. }
(* FILL IN HERE *) Admitted.
☐
Notation "'Fun' x ':=' F1" :=
((wpgen_fun (fun x ⇒ F1)))
(at level 69, x name, right associativity,
format "'[v' '[' 'Fun' x ':=' F1 ']' ']'").
((wpgen_fun (fun x ⇒ F1)))
(at level 69, x name, right associativity,
format "'[v' '[' 'Fun' x ':=' F1 ']' ']'").
3. Treatment of Recursive Functions
∀ vx H' Q',
H' ==> wpgen ((f,vf)::(x,vx)::E) t1 Q' →
triple (trm_app vf vx) H' Q' Like for wpgen_fun, we can make the definition more concise by eliminating H'. Concretely, we define:
Definition wpgen_fix (Fof:val→val→formula) : formula := fun Q ⇒
\∀ vf, \[∀ vx Q', Fof vf vx Q' ==> wp (trm_app vf vx) Q'] \−∗ Q vf.
\∀ vf, \[∀ vx Q', Fof vf vx Q' ==> wp (trm_app vf vx) Q'] \−∗ Q vf.
Then we integrate this definition is wpgen as shown below.
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct match t with
| ..
| trm_fix f x t1 ⇒ wpgen_fix (fun vf v ⇒ wpgen ((f,vf)::(x,v)::E) t1)
| ..
end
Here again, we introduce a piece of notation for wpgen_fix. We let
Fix f x := F stand for wpgen_fix (fun f x ⇒ F).
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct match t with
| ..
| trm_fix f x t1 ⇒ wpgen_fix (fun vf v ⇒ wpgen ((f,vf)::(x,v)::E) t1)
| ..
end
Notation "'Fix' f x ':=' F1" :=
((wpgen_fix (fun f x ⇒ F1)))
(at level 69, f name, x name, right associativity,
format "'[v' '[' 'Fix' f x ':=' F1 ']' ']'").
((wpgen_fix (fun f x ⇒ F1)))
(at level 69, f name, x name, right associativity,
format "'[v' '[' 'Fix' f x ':=' F1 ']' ']'").
4. Final Definition of wpgen, with Processing a Local Functions
Fixpoint wpgen (E:ctx) (t:trm) : formula :=
mkstruct match t with
| trm_val v ⇒ wpgen_val v
| trm_var x ⇒ wpgen_var E x
| trm_fun x t1 ⇒ wpgen_fun (fun v ⇒ wpgen ((x,v)::E) t1)
| trm_fix f x t1 ⇒ wpgen_fix (fun vf v ⇒ wpgen ((f,vf)::(x,v)::E) t1)
| trm_app t1 t2 ⇒ wpgen_app (isubst E t)
| trm_seq t1 t2 ⇒ wpgen_seq (wpgen E t1) (wpgen E t2)
| trm_let x t1 t2 ⇒ wpgen_let (wpgen E t1) (fun v ⇒ wpgen ((x,v)::E) t2)
| trm_if t0 t1 t2 ⇒ wpgen_if (isubst E t0) (wpgen E t1) (wpgen E t2)
end.
mkstruct match t with
| trm_val v ⇒ wpgen_val v
| trm_var x ⇒ wpgen_var E x
| trm_fun x t1 ⇒ wpgen_fun (fun v ⇒ wpgen ((x,v)::E) t1)
| trm_fix f x t1 ⇒ wpgen_fix (fun vf v ⇒ wpgen ((f,vf)::(x,v)::E) t1)
| trm_app t1 t2 ⇒ wpgen_app (isubst E t)
| trm_seq t1 t2 ⇒ wpgen_seq (wpgen E t1) (wpgen E t2)
| trm_let x t1 t2 ⇒ wpgen_let (wpgen E t1) (fun v ⇒ wpgen ((x,v)::E) t2)
| trm_if t0 t1 t2 ⇒ wpgen_if (isubst E t0) (wpgen E t1) (wpgen E t2)
end.
5. Tactic for Reasoning About Functions
Lemma xfun_spec_lemma : ∀ (S:val→Prop) H Q Fof,
(∀ vf,
(∀ vx H' Q', (H' ==> Fof vx Q') → triple (trm_app vf vx) H' Q') →
S vf) →
(∀ vf, S vf → (H ==> Q vf)) →
H ==> wpgen_fun Fof Q.
Proof using.
introv M1 M2. unfold wpgen_fun. xsimpl. intros vf N.
applys M2. applys M1. introv K. rewrite <- wp_equiv.
applys himpl_trans_r K. applys N.
Qed.
Tactic Notation "xfun" constr(S) :=
xseq_xlet_if_needed; xstruct_if_needed; applys xfun_spec_lemma S.
(∀ vf,
(∀ vx H' Q', (H' ==> Fof vx Q') → triple (trm_app vf vx) H' Q') →
S vf) →
(∀ vf, S vf → (H ==> Q vf)) →
H ==> wpgen_fun Fof Q.
Proof using.
introv M1 M2. unfold wpgen_fun. xsimpl. intros vf N.
applys M2. applys M1. introv K. rewrite <- wp_equiv.
applys himpl_trans_r K. applys N.
Qed.
Tactic Notation "xfun" constr(S) :=
xseq_xlet_if_needed; xstruct_if_needed; applys xfun_spec_lemma S.
Second, we describe the tactic xfun with no argument. It applies to a goal
of the form H ==> wpgen_fun Fof Q. The tactic xfun simply provides an
hypothesis about the local function. The user may subsequently exploit this
hypothesis for reasoning about a call to that function, just like if the
code of the function was inlined at its call site. In practice, the use of
xfun without argument is most relevant for local functions that are
invoked exactly once. For example, higher-order iterators such as
List.iter or List.map are typically invoked with an ad-hoc functions
that appears exactly once.
Lemma xfun_nospec_lemma : ∀ H Q Fof,
(∀ vf,
(∀ vx H' Q', (H' ==> Fof vx Q') → triple (trm_app vf vx) H' Q') →
(H ==> Q vf)) →
H ==> wpgen_fun Fof Q.
Proof using.
introv M. unfold wpgen_fun. xsimpl. intros vf N. applys M.
introv K. rewrite <- wp_equiv. applys himpl_trans_r K. applys N.
Qed.
Tactic Notation "xfun" :=
xseq_xlet_if_needed; xstruct_if_needed; applys xfun_nospec_lemma.
(∀ vf,
(∀ vx H' Q', (H' ==> Fof vx Q') → triple (trm_app vf vx) H' Q') →
(H ==> Q vf)) →
H ==> wpgen_fun Fof Q.
Proof using.
introv M. unfold wpgen_fun. xsimpl. intros vf N. applys M.
introv K. rewrite <- wp_equiv. applys himpl_trans_r K. applys N.
Qed.
Tactic Notation "xfun" :=
xseq_xlet_if_needed; xstruct_if_needed; applys xfun_nospec_lemma.
A generalization of xfun that handles recursive functions may be defined
following exactly the same pattern. Details may be found in the file
LibSepReference.v
This completes our presentation of a version of wpgen that recursively
processes the local definition of non-recursive functions. A practical
example is presented next.
We import here the definitions from LibSepReference, which provides the a
definition of wpgen that recurse in function bodies exactly as defined in
subsection 4 above, and which defines all the other x-tactics as previously
but for this recursive version of [wpgen].
Consider again the example program myincr, whose code is:
fun p →
let f = (fun () → incr p) in
f();
f()
We first illustrate a call to xfun with an explicit specification. Here,
the function f is specified as incrementing the reference p. Observe
that the body function of the function f is verified only once. The
reasoning about the two calls to the function f that appears in the code
are done with respect to the specification that we provide as argument to
xfun in the proof script.
let f = (fun () → incr p) in
f();
f()
Lemma triple_incrtwice : ∀ (p:loc) (n:int),
triple (trm_app incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp.
xfun (fun (f:val) ⇒ ∀ (m:int),
triple (f())
(p ~~> m)
(fun _ ⇒ p ~~> (m+1))); intros f Hf.
{ intros.
applys Hf. (* Hf is the name of the hypothesis on the body of f *)
clear Hf.
xapp. (* exploits triple_incr *) xsimpl. }
xapp. (* exploits Hf. *)
xapp. (* exploits Hf. *)
xsimpl. math.
Qed.
triple (trm_app incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp.
xfun (fun (f:val) ⇒ ∀ (m:int),
triple (f())
(p ~~> m)
(fun _ ⇒ p ~~> (m+1))); intros f Hf.
{ intros.
applys Hf. (* Hf is the name of the hypothesis on the body of f *)
clear Hf.
xapp. (* exploits triple_incr *) xsimpl. }
xapp. (* exploits Hf. *)
xapp. (* exploits Hf. *)
xsimpl. math.
Qed.
We next illustrate a call to xfun without argument. The "generic
specification" that comes as hypothesis about the local function is a
proposition that describes the behavior of the function in terms of the
weakest-precondition of its body. When reasoning about a call to the
function, one can invoke this generic specification. The effect is
equivalent to that of inlining the code of the function at its call site.
The example shown below contains two calls to the function f. The script
invokes xfun without argument. Then, each of the two calls to f executes
a call to incr. Thus the proof script involves two calls to xapp that
each exploit the specification triple_incr.
Lemma triple_incrtwice' : ∀ (p:loc) (n:int),
triple (trm_app incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp.
xfun; intros f Hf.
xapp. (* exploits Hf *)
xapp. (* exploits triple_incr *)
xapp. (* exploits Hf *)
xapp. (* exploits triple_incr *)
xsimpl. math.
Qed.
triple (trm_app incrtwice p)
(p ~~> n)
(fun _ ⇒ p ~~> (n+2)).
Proof using.
xwp.
xfun; intros f Hf.
xapp. (* exploits Hf *)
xapp. (* exploits triple_incr *)
xapp. (* exploits Hf *)
xapp. (* exploits triple_incr *)
xsimpl. math.
Qed.
7. Exercise on a Local Recursive Function
let g = (fix g i → if i < b then (f i; g (i+1)) end) in
g a
Definition forloop : val :=
<{ fun 'a 'b 'f ⇒
let 'g = (fix_ 'g 'i ⇒
let 'c = 'i < 'b in
if 'c then
'f 'i ;
let 'j = 'i + 1 in
'g 'j
end) in
'g 'a }>.
<{ fun 'a 'b 'f ⇒
let 'g = (fix_ 'g 'i ⇒
let 'c = 'i < 'b in
if 'c then
'f 'i ;
let 'j = 'i + 1 in
'g 'j
end) in
'g 'a }>.
Like for the function repeat, the specification of forloop is expressed
using an invariant, named I, of type int→hprop. The hypothesis on f
asserts that a call to f i takes a state satisfying I i to a state
satisfying I (i+1). For simplicity, we specify the function only in the
case where a ≤ b.
Exercise: 4 stars, standard, especially useful (triple_forloop)
Verify the function forloop. Hint: provide the specification of g to xfun. To set up the induction, use the sequence: intros i. induction_wf IH: (upto b) i. intros Hi.. Besides, the tactics math_rewrite is helpful at one point in the proof.
Lemma triple_forloop : ∀ (I:int→hprop) (a b:int) (f:val),
a ≤ b →
(∀ i, a ≤ i ≤ b →
triple (f i)
(I i)
(fun u ⇒ I (i+1))) →
triple (forloop a b f)
(I a)
(fun r ⇒ I b).
Proof using. (* FILL IN HERE *) Admitted.
☐
a ≤ b →
(∀ i, a ≤ i ≤ b →
triple (f i)
(I i)
(fun u ⇒ I (i+1))) →
triple (forloop a b f)
(I a)
(fun r ⇒ I b).
Proof using. (* FILL IN HERE *) Admitted.
☐
Historical Notes
(* 2024-11-04 20:38 *)