StructArrays and Records
Set Implicit Arguments.
From SLF Require Import LibSepReference LibSepTLCbuffer.
#[global]
Hint Rewrite conseq_cons' : rew_listx.
Implicit Types P : Prop.
Implicit Types H : hprop.
Implicit Types Q : val→hprop.
Implicit Type p q : loc.
Implicit Type k : nat.
Implicit Type i n : int.
Implicit Type v : val.
Implicit Type L : list val.
Implicit Types z : nat.
From SLF Require Import LibSepReference LibSepTLCbuffer.
#[global]
Hint Rewrite conseq_cons' : rew_listx.
Implicit Types P : Prop.
Implicit Types H : hprop.
Implicit Types Q : val→hprop.
Implicit Type p q : loc.
Implicit Type k : nat.
Implicit Type i n : int.
Implicit Type v : val.
Implicit Type L : list val.
Implicit Types z : nat.
First Pass
Representation of a Set of Consecutive Cells
Fixpoint hcells (L:list val) (p:loc) : hprop :=
match L with
| nil ⇒ \[]
| x::L' ⇒ (p ~~> x) \* (hcells L' (p+1)%nat)
end.
match L with
| nil ⇒ \[]
| x::L' ⇒ (p ~~> x) \* (hcells L' (p+1)%nat)
end.
The description of a set of consecutive cells can be split in two
parts, at an arbitrary index. Concretely, if we have
hcells (L1++L2) p, then we can separate the left part
hcells L1 p from the right part hcells L2 q, where the address
q is equal to p + length L1. Reciprocally, the two parts can
be merged back into the original form at any time.
Parameter hcells_concat_eq : ∀ p L1 L2,
hcells (L1++L2) p = (hcells L1 p \* hcells L2 (length L1 + p)%nat).
hcells (L1++L2) p = (hcells L1 p \* hcells L2 (length L1 + p)%nat).
This "splitting lemma for arrays" is useful for carrying out local
reasoning on arrays. For example, in the recursive quicksort algorithm,
the specification requires a description of the segment to be sorted;
the representation of this segment is split so that subsegments
can be provided for reasoning about the recursive calls. One thereby
obtains for free the fact that the cells outside of the targeted
segment remain unmodified.
Representation of an Array with a Block Header
- In OCaml, the header consists of a physical memory cell at the head of the array. This cell may be queried to obtain the length of the array.
- In C, the header is a logical notion. It describes the length of the allocated block, and it used in Separation Logic to specify the behavior of the deallocation function, which can only be called on the address of an allocated block, deallocating the full block at once.
The heap predicate hheader k p should capture the information that p
is not null. Indeed blocks cannot be allocated at the null location.
An array is described by the predicate harray L p, where the list
L describes the contents of the cells. This heap predicate covers
both the header, which describes a block of length equal to length L,
and the contents of the cells, described by hcells L (p+1).
Note that p+1 corresponds to the address of the first cell of the array,
located immediately past the header cell that sits at location p.
Specification of Allocation
The operation val_alloc k is specified as producing an array
whose cells contain the special "uninitialized value", written
val_uninit. The assume val_uninit to be part of the grammar
of values.
Check val_uninit : val.
More precisely, the postcondition of val_alloc k is of the form
funloc p ⇒ harray L p, where the list L is defined as the
repetition of k times the value val_uninit. This list is written
LibList.make k val_uninit.
Check val_uninit : val.
Parameter triple_alloc_nat : ∀ k,
triple (val_alloc k)
\[]
(funloc p ⇒ harray (LibList.make k val_uninit) p).
triple (val_alloc k)
\[]
(funloc p ⇒ harray (LibList.make k val_uninit) p).
In practice, the operation val_alloc is applied to a non-negative
integer, which might not necessarily be syntactically a natural number.
Hence, the following lemma, which specifies val_alloc n for n ≥ 0,
is more handy to use.
Parameter triple_alloc : ∀ n,
n ≥ 0 →
triple (val_alloc n)
\[]
(funloc p ⇒ harray (LibList.make (abs n) val_uninit) p).
n ≥ 0 →
triple (val_alloc n)
\[]
(funloc p ⇒ harray (LibList.make (abs n) val_uninit) p).
The specification above turns out to be often unnecessarily precise.
For most applications, it is sufficient for the postcondition to
describe the array as harray L p for some unspecified list L
of length n. This weaker specification is stated and proved next.
Parameter triple_alloc_array : ∀ n,
n ≥ 0 →
triple (val_alloc n)
\[]
(funloc p ⇒ \∃ L, \[n = length L] \* harray L p).
n ≥ 0 →
triple (val_alloc n)
\[]
(funloc p ⇒ \∃ L, \[n = length L] \* harray L p).
Remark: in OCaml, one must provide an initialization value explicitly,
so there is no such thing as val_uninit; in JavaScript, val_uninit
is called undefined; in Java, arrays are initialized with zeros;
in C, uninitialized data should not be read. In that language, one would
typically implement this policy by restricting the evaluation rule for
the read operation, adding a premise of the form v ≠ val_uninit to
ensure that uninitialized values cannot be read.
Specification of the Deallocation
The specification of val_dealloc p features a precondition that
requires an array of the form harray L p, and an empty postcondition.
Observe that the harray L p predicate includes a header of the form
hheader k p, ensuring that a block can be deallocated only once.
Specification of Array Operations
The specification of val_array_get is as follows. The precondition
describes the array in the form harray L p, with a premise that
requires the index i to be in the valid range, that is, between
zero (inclusive) and the length of L (exclusive). The postcondition
asserts that the result value is nth (abs i) L, and mentions
the unmodified array, still described by harray L p.
Parameter triple_array_get : ∀ L p i,
0 ≤ i < length L →
triple (val_array_get p i)
(harray L p)
(fun r ⇒ \[r = LibList.nth (abs i) L] \* harray L p).
0 ≤ i < length L →
triple (val_array_get p i)
(harray L p)
(fun r ⇒ \[r = LibList.nth (abs i) L] \* harray L p).
The operation val_array_set p i v updates the contents of the i-th
cell of the array at location p.
The specification of val_array_set admits the same precondition as
val_array_get, with harray L p and the constraint 0 ≤ i < length L.
Its postcondition describes the updated array using a predicate of the
form harray L' p, where L' corresponds to update (abs i) v L.
Parameter triple_array_set : ∀ L p i v,
0 ≤ i < length L →
triple (val_array_set p i v)
(harray L p)
(fun _ ⇒ harray (LibList.update (abs i) v L) p).
0 ≤ i < length L →
triple (val_array_set p i v)
(harray L p)
(fun _ ⇒ harray (LibList.update (abs i) v L) p).
The operation val_array_length p returns the length of the array
allocated at location p.
There are two useful specifications for val_array_length. The first
one operates with the heap predicate harray L p. The return value is
the length of the list L.
Parameter triple_array_length : ∀ L p,
triple (val_array_length p)
(harray L p)
(fun r ⇒ \[r = length L] \* harray L p).
triple (val_array_length p)
(harray L p)
(fun r ⇒ \[r = length L] \* harray L p).
The second specification for val_array_length operates only on the
header of the array. This small-footprint specification is useful to
read the length of an array whose cells are described by separated
segments, that is, after hcells_concat_eq has been exploited.
Parameter triple_array_length_header : ∀ k p,
triple (val_array_length p)
(hheader k p)
(fun r ⇒ \[r = (k:int)] \* hheader k p).
#[global] Hint Resolve triple_array_get triple_array_set triple_array_length : triple.
triple (val_array_length p)
(hheader k p)
(fun r ⇒ \[r = (k:int)] \* hheader k p).
#[global] Hint Resolve triple_array_get triple_array_set triple_array_length : triple.
Representation of Individual Records Fields
For example, consider a mutable list cell allocated at location p.
It is represented in memory as:
Concretely, the record can be represented by the heap predicate:
(hheader 2 p) \* ((p+1) ~~> x) \* ((p+2) ~~> q).
To avoid exposing pointer arithmetic to the end-user, we introduce
the "record field" notation p`.k ~~> v to denote (p+1+k) ~~> v.
For example, with the definition of the field offsets head := 0
and tail := 1, the same record as before can be represented as:
(hheader 2 p) \* (p`.head ~~> x) \* (p`.tail ~~> q).
- a header at location p, storing the number of fields, that is, the value 2;
- a cell at location p+1, storing the contents of the head field,
- a cell at location p+2, storing the contents of the tail field.
Definition hfield (p:loc) (k:field) (v:val) : hprop :=
(p+1+k)%nat ~~> v.
Notation "p `. k '~~>' v" := (hfield p k v)
(at level 32, k at level 0, no associativity,
format "p `. k '~~>' v").
(p+1+k)%nat ~~> v.
Notation "p `. k '~~>' v" := (hfield p k v)
(at level 32, k at level 0, no associativity,
format "p `. k '~~>' v").
Representation of Records
A record consists of a list of fields.
We let the meta-variable kvs denote such lists.
A list cell with head field x and tail field q is represented
by the list (head,x)::(tail,q)::nil. To support the syntax
`{ head := x; tail := q }, we introduce the following notation.
Notation "`{ k1 := v1 }" :=
((k1,(v1:val))::nil)
(at level 0, k1 at level 0, only parsing).
Notation "`{ k1 := v1 ; k2 := v2 }" :=
((k1,(v1:val))::(k2,(v2:val))::nil)
(at level 0, k1, k2 at level 0, only parsing).
Notation "`{ k1 := v1 ; k2 := v2 ; k3 := v3 }" :=
((k1,(v1:val))::(k2,(v2:val))::(k3,(v3:val))::nil)
(at level 0, k1, k2, k3 at level 0, only parsing).
Notation "`{ k1 := v1 }" :=
((k1,v1)::nil)
(at level 0, k1 at level 0, only printing).
Notation "`{ k1 := v1 ; k2 := v2 }" :=
((k1,v1)::(k2,v2)::nil)
(at level 0, k1, k2 at level 0, only printing).
Notation "`{ k1 := v1 ; k2 := v2 ; k3 := v3 }" :=
((k1,v1)::(k2,v2)::(k3,v3)::nil)
(at level 0, k1, k2, k3 at level 0, only printing).
Open Scope val_scope.
((k1,(v1:val))::nil)
(at level 0, k1 at level 0, only parsing).
Notation "`{ k1 := v1 ; k2 := v2 }" :=
((k1,(v1:val))::(k2,(v2:val))::nil)
(at level 0, k1, k2 at level 0, only parsing).
Notation "`{ k1 := v1 ; k2 := v2 ; k3 := v3 }" :=
((k1,(v1:val))::(k2,(v2:val))::(k3,(v3:val))::nil)
(at level 0, k1, k2, k3 at level 0, only parsing).
Notation "`{ k1 := v1 }" :=
((k1,v1)::nil)
(at level 0, k1 at level 0, only printing).
Notation "`{ k1 := v1 ; k2 := v2 }" :=
((k1,v1)::(k2,v2)::nil)
(at level 0, k1, k2 at level 0, only printing).
Notation "`{ k1 := v1 ; k2 := v2 ; k3 := v3 }" :=
((k1,v1)::(k2,v2)::(k3,v3)::nil)
(at level 0, k1, k2, k3 at level 0, only printing).
Open Scope val_scope.
The heap predicate hfields kvs p asserts that, at location p,
one finds the representation of the fields described by the list kvs.
The predicate hfields kvs p is defined recursively on the list kvs.
If kvs is empty, the predicate describes the empty heap predicate.
Otherwise, it describes a first field, at offset k and with contents
v, as the predicate p`.k ~~> v, and it describes the remaining
fields recursively.
Fixpoint hfields (kvs:hrecord_fields) (p:loc) : hprop :=
match kvs with
| nil ⇒ \[]
| (k,v)::kvs' ⇒ (p`.k ~~> v) \* (hfields kvs' p)
end.
match kvs with
| nil ⇒ \[]
| (k,v)::kvs' ⇒ (p`.k ~~> v) \* (hfields kvs' p)
end.
The heap predicate hrecord kvs p describes a record: it covers
not just all the fields of the record, but also the header.
The cells are described by hfields kvs p, and the header is
described by hheader z p, where nb should be such that the
keys in the list kvs are between 0 inclusive and nb exclusive.
A permissive definition of hrecord kvs p would allow the fields
from the list kvs to be permuted arbitrarily. Yet, to avoid
complications related to permutations, we make in this course the
simplifying assumptions that fields are always listed in the order
of their associated offsets.
The auxiliary predicate maps_all_fields z kvs asserts that the
keys from the association list kvs correspond exactly to the sequence
made of the first nb natural numbers, that is, 0; 1; ...; nb-1.
Definition maps_all_fields (nb:nat) (kvs:hrecord_fields) : Prop :=
LibList.map fst kvs = nat_seq 0 nb.
LibList.map fst kvs = nat_seq 0 nb.
The predicate hrecord kvs p exploits maps_all_fields z kvs
to relate the value nb stored in the header with the association
list kvs that describes the contents of the fields.
Definition hrecord (kvs:hrecord_fields) (p:loc) : hprop :=
\∃ z, hheader z p \* hfields kvs p \* \[maps_all_fields z kvs].
\∃ z, hheader z p \* hfields kvs p \* \[maps_all_fields z kvs].
The heap predicate hrecord kvs p captures in particular the
invariant that the location p is not null.
Lemma hrecord_not_null : ∀ p kvs,
hrecord kvs p ==> hrecord kvs p \* \[p ≠ null].
Proof using.
intros. unfold hrecord. xpull. intros z M.
xchanges* hheader_not_null.
Qed.
hrecord kvs p ==> hrecord kvs p \* \[p ≠ null].
Proof using.
intros. unfold hrecord. xpull. intros z M.
xchanges* hheader_not_null.
Qed.
We introduce the notation p ~~~> kvs for hrecord kvs p,
allowing to write, e.g., p ~~~>`{ head := x; tail := q }.
Example with Mutable Linked Lists
Definition head : field := 0%nat.
Definition tail : field := 1%nat.
Fixpoint MList (L:list val) (p:loc) : hprop :=
match L with
| nil ⇒ \[p = null]
| x::L' ⇒ \∃ q, (p ~~~>`{ head := x; tail := q}) \* (MList L' q)
end.
Definition tail : field := 1%nat.
Fixpoint MList (L:list val) (p:loc) : hprop :=
match L with
| nil ⇒ \[p = null]
| x::L' ⇒ \∃ q, (p ~~~>`{ head := x; tail := q}) \* (MList L' q)
end.
Recall the statement of the lemma MList_if, which reformulates
the definition of MList with a case analysis on p = null.
Observe the use of the lemma hrecrod_not_null to exploit the
fact that a record cannot be allocated at the null location.
Lemma MList_if : ∀ (p:loc) (L:list val),
(MList L p)
==> (If p = null
then \[L = nil]
else \∃ x q L', \[L = x::L']
\* (p ~~~> `{ head := x ; tail := q }) \* (MList L' q)).
Proof using.
intros. destruct L as [|x L']; simpl.
{ xpull. intros M. case_if. xsimpl*. }
{ xpull. intros q. xchange hrecord_not_null. intros N.
case_if. xsimpl*. }
Qed.
Global Opaque MList.
(MList L p)
==> (If p = null
then \[L = nil]
else \∃ x q L', \[L = x::L']
\* (p ~~~> `{ head := x ; tail := q }) \* (MList L' q)).
Proof using.
intros. destruct L as [|x L']; simpl.
{ xpull. intros M. case_if. xsimpl*. }
{ xpull. intros q. xchange hrecord_not_null. intros N.
case_if. xsimpl*. }
Qed.
Global Opaque MList.
Declare Scope trm_scope_ext.
The read operation is described by an expression of the form
val_get_field k p, where k denotes a field name, and where p
denotes the location of a record. Technically, val_get_field k
is a value, and this value is applied to the pointer p. Hence,
val_get_field has type field → val.
The read operation val_get_field k p is abbreviated as p`.k.
Notation "t1 '`.' k" :=
(val_get_field k t1)
(in custom trm at level 56, k at level 0, format "t1 '`.' k" )
: trm_scope_ext.
(val_get_field k t1)
(in custom trm at level 56, k at level 0, format "t1 '`.' k" )
: trm_scope_ext.
The operation val_get_field k p can be specified at three levels.
First, its small-footprint specification operates at the level of
a single field, described by p`.k ~~> v. The specification is
very similar to that of val_get. The return value is exactly v.
Parameter triple_get_field : ∀ p k v,
triple (val_get_field k p)
(p`.k ~~> v)
(fun r ⇒ \[r = v] \* (p`.k ~~> v)).
triple (val_get_field k p)
(p`.k ~~> v)
(fun r ⇒ \[r = v] \* (p`.k ~~> v)).
Second, this operation can be specified with respect to a list of
fields, described in the form hfields kvs p. To that end, we introduce
a function called hfields_lookup for extracting the value v
associated with a field k in a list of record fields kvs.
The operation hfields_lookup k kvs returns a result of type option val,
because we cannot presume that the field k occurs in kvs, even though
it is always the case in practice.
Fixpoint hfields_lookup (k:field) (kvs:hrecord_fields) : option val :=
match kvs with
| nil ⇒ None
| (ki,vi)::kvs' ⇒ if Nat.eq_dec k ki
then Some vi
else hfields_lookup k kvs'
end.
match kvs with
| nil ⇒ None
| (ki,vi)::kvs' ⇒ if Nat.eq_dec k ki
then Some vi
else hfields_lookup k kvs'
end.
Under the assumption that hfields_lookup k kvs returns Some v,
the read operation val_get_field k p is specified to return v.
The corresponding specification appears below.
Parameter triple_get_field_hfields : ∀ kvs p k v,
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hfields kvs p)
(fun r ⇒ \[r = v] \* hfields kvs p).
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hfields kvs p)
(fun r ⇒ \[r = v] \* hfields kvs p).
Third and last, the read operation can be specified with respect
to the predicate hrecord kvs p, describing the full record, including
its header. The specification is similar to the previous one.
Parameter triple_get_field_hrecord : ∀ kvs p k v,
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hrecord kvs p)
(fun r ⇒ \[r = v] \* hrecord kvs p).
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hrecord kvs p)
(fun r ⇒ \[r = v] \* hrecord kvs p).
Writing in Record Fields
The write operation val_get_field k p v is abbreviated as
Set p`.k ':= v.
Notation "t1 '`.' k ':=' t2" :=
(val_set_field k t1 t2)
(in custom trm at level 56, k at level 0, format "t1 '`.' k ':=' t2")
: trm_scope_ext.
(val_set_field k t1 t2)
(in custom trm at level 56, k at level 0, format "t1 '`.' k ':=' t2")
: trm_scope_ext.
Like for the read operation, the write operation can be specified at three
levels. First, at the level of an individual field.
Parameter triple_set_field : ∀ v p k v',
triple (val_set_field k p v)
(p`.k ~~> v')
(fun _ ⇒ p`.k ~~> v).
triple (val_set_field k p v)
(p`.k ~~> v')
(fun _ ⇒ p`.k ~~> v).
Then, at the level of hfields and hrecord. To that end, we
introduce an auxiliary function called hrecord_update for computing
the updated list of fields following an write operation.
Concretely, hrecord_update k w kvs replaces the contents of the field
named k with the value w. It returns some description kvs' of the
record fields, provided the update operation succeeded, i.e., provided that
the field k on which the update is to be performed actually occurs in the
list kvs.
Fixpoint hfields_update (k:field) (v:val) (kvs:hrecord_fields)
: option hrecord_fields :=
match kvs with
| nil ⇒ None
| (ki,vi)::kvs' ⇒ if Nat.eq_dec k ki
then Some ((k,v)::kvs')
else match hfields_update k v kvs' with
| None ⇒ None
| Some LR ⇒ Some ((ki,vi)::LR)
end
end.
: option hrecord_fields :=
match kvs with
| nil ⇒ None
| (ki,vi)::kvs' ⇒ if Nat.eq_dec k ki
then Some ((k,v)::kvs')
else match hfields_update k v kvs' with
| None ⇒ None
| Some LR ⇒ Some ((ki,vi)::LR)
end
end.
The specification in terms of hfields is as follows.
Parameter triple_set_field_hfields : ∀ kvs kvs' k p v,
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hfields kvs p)
(fun _ ⇒ hfields kvs' p).
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hfields kvs p)
(fun _ ⇒ hfields kvs' p).
The specification in terms of hrecord is similar.
Parameter triple_set_field_hrecord : ∀ kvs kvs' k p v,
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hrecord kvs p)
(fun _ ⇒ hrecord kvs' p).
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hrecord kvs p)
(fun _ ⇒ hrecord kvs' p).
Allocation of Records
The specification of val_alloc_hrecord ks involves an empty
precondition and a postcondition of the form hrecord kvs p,
where the list kvs maps the fields names from ks to the
value val_uninit. The premise expressed in terms of nat_seq
ensures that the list ks contains consecutive offsets starting
from zero.
In the statement below, LibListExec.length is a variant of
LibList.length that computes in Coq (using simpl or reflexivity).
Likewise for LibListExec.map, which is equivalent to LibList.map.
Parameter triple_alloc_hrecord : ∀ ks,
ks = nat_seq 0 (LibListExec.length ks) →
triple (val_alloc_hrecord ks)
\[]
(funloc p ⇒ hrecord (LibListExec.map (fun k ⇒ (k,val_uninit)) ks) p).
#[global] Hint Resolve triple_alloc_hrecord : triple.
ks = nat_seq 0 (LibListExec.length ks) →
triple (val_alloc_hrecord ks)
\[]
(funloc p ⇒ hrecord (LibListExec.map (fun k ⇒ (k,val_uninit)) ks) p).
#[global] Hint Resolve triple_alloc_hrecord : triple.
For example, the allocation of a list cell is specified as follows.
Lemma triple_alloc_mcons :
triple (val_alloc_hrecord (head::tail::nil))
\[]
(funloc p ⇒ p ~~~> `{ head := val_uninit ; tail := val_uninit }).
Proof using. applys* triple_alloc_hrecord. Qed.
triple (val_alloc_hrecord (head::tail::nil))
\[]
(funloc p ⇒ p ~~~> `{ head := val_uninit ; tail := val_uninit }).
Proof using. applys* triple_alloc_hrecord. Qed.
Deallocation of Records
The specification of this operation simply requires as precondition
the full record description, in the form hrecord kvs p, and yields
the empty postcondition.
Parameter triple_dealloc_hrecord : ∀ kvs p,
triple (val_dealloc_hrecord p)
(hrecord kvs p)
(fun _ ⇒ \[]).
#[global] Hint Resolve triple_dealloc_hrecord : triple.
triple (val_dealloc_hrecord p)
(hrecord kvs p)
(fun _ ⇒ \[]).
#[global] Hint Resolve triple_dealloc_hrecord : triple.
To improve readability, we introduce the notation Delete p
for record deallocation.
For example, the following corollary to triple_dealloc_hrecord may be
used to reason about the deallocation of a list cell.
Lemma triple_dealloc_mcons : ∀ p x q,
triple (val_dealloc_hrecord p)
(p ~~~> `{ head := x ; tail := q })
(fun _ ⇒ \[]).
Proof using. intros. applys* triple_dealloc_hrecord. Qed.
triple (val_dealloc_hrecord p)
(p ~~~> `{ head := x ; tail := q })
(fun _ ⇒ \[]).
Proof using. intros. applys* triple_dealloc_hrecord. Qed.
Combined Record Allocation and Initialization
In the definition below, the expression in braces
val_alloc_hrecord (k1::k2::nil) refers to a Coq term,
embedded in the syntax of program terms.
Definition val_new_hrecord_2 (k1:field) (k2:field) : val :=
<{ fun 'x1 'x2 ⇒
let 'p = {val_alloc_hrecord (k1::k2::nil)} in
'p`.k1 := 'x1;
'p`.k2 := 'x2;
'p }>.
<{ fun 'x1 'x2 ⇒
let 'p = {val_alloc_hrecord (k1::k2::nil)} in
'p`.k1 := 'x1;
'p`.k2 := 'x2;
'p }>.
To improve readability, we introduce notation to allow writing, e.g.,
`{ head := x; tail := q } for the allocation and initialization
of a list cell.
Notation "`{ k1 := v1 ; k2 := v2 }" :=
(val_new_hrecord_2 k1 k2 v1 v2)
(in custom trm at level 65,
k1, k2 at level 0,
v1, v2 at level 65) : trm_scope_ext.
(val_new_hrecord_2 k1 k2 v1 v2)
(in custom trm at level 65,
k1, k2 at level 0,
v1, v2 at level 65) : trm_scope_ext.
This operation is specified as follows.
Lemma triple_new_hrecord_2 : ∀ k1 k2 v1 v2,
k1 = 0%nat →
k2 = 1%nat →
triple <{ `{ k1 := v1; k2 := v2 } }>
\[]
(funloc p ⇒ p ~~~> `{ k1 := v1 ; k2 := v2 }).
Proof using.
introv → →. xwp. xapp triple_alloc_hrecord. { auto. } intros p. simpl.
xapp triple_set_field_hrecord. { reflexivity. }
xapp triple_set_field_hrecord. { reflexivity. }
xval. xsimpl*.
Qed.
k1 = 0%nat →
k2 = 1%nat →
triple <{ `{ k1 := v1; k2 := v2 } }>
\[]
(funloc p ⇒ p ~~~> `{ k1 := v1 ; k2 := v2 }).
Proof using.
introv → →. xwp. xapp triple_alloc_hrecord. { auto. } intros p. simpl.
xapp triple_set_field_hrecord. { reflexivity. }
xapp triple_set_field_hrecord. { reflexivity. }
xval. xsimpl*.
Qed.
For example, the operation mcons x q allocates a list cell with
head value x and tail pointer q.
Definition mcons : val :=
val_new_hrecord_2 head tail.
Lemma triple_mcons : ∀ (x q:val),
triple (mcons x q)
\[]
(funloc p ⇒ p ~~~> `{ head := x ; tail := q }).
Proof using. intros. applys* triple_new_hrecord_2. Qed.
End RecordInit.
val_new_hrecord_2 head tail.
Lemma triple_mcons : ∀ (x q:val),
triple (mcons x q)
\[]
(funloc p ⇒ p ~~~> `{ head := x ; tail := q }).
Proof using. intros. applys* triple_new_hrecord_2. Qed.
End RecordInit.
Extending xapp to Support Record Access Operations
Lemma xapp_get_field_lemma : ∀ H k p Q,
H ==> \∃ kvs, (hrecord kvs p) \*
match hfields_lookup k kvs with
| None ⇒ \[False]
| Some v ⇒ ((fun r ⇒ \[r = v] \* hrecord kvs p) \−−∗ protect Q) end →
H ==> wp (val_get_field k p) Q.
Proof using.
introv N. xchange N. intros kvs. cases (hfields_lookup k kvs).
{ rewrite wp_equiv. applys* triple_conseq_frame triple_get_field_hrecord.
xsimpl. intros r →. xchange (qwand_specialize v). rewrite* hwand_hpure_l. }
{ xpull. }
Qed.
Lemma xapp_set_field_lemma : ∀ H k p v Q,
H ==> \∃ kvs, (hrecord kvs p) \*
match hfields_update k v kvs with
| None ⇒ \[False]
| Some kvs' ⇒ ((fun _ ⇒ hrecord kvs' p) \−−∗ protect Q) end →
H ==> wp (val_set_field k p v) Q.
Proof using.
introv N. xchange N. intros kvs. cases (hfields_update k v kvs).
{ rewrite wp_equiv. applys* triple_conseq_frame triple_set_field_hrecord.
xsimpl. intros r. xchange (qwand_specialize r). }
{ xpull. }
Qed.
Ltac xapp_nosubst_for_records tt ::=
first [ applys xapp_set_field_lemma; xsimpl; simpl; xapp_simpl
| applys xapp_get_field_lemma; xsimpl; simpl; xapp_simpl ].
H ==> \∃ kvs, (hrecord kvs p) \*
match hfields_lookup k kvs with
| None ⇒ \[False]
| Some v ⇒ ((fun r ⇒ \[r = v] \* hrecord kvs p) \−−∗ protect Q) end →
H ==> wp (val_get_field k p) Q.
Proof using.
introv N. xchange N. intros kvs. cases (hfields_lookup k kvs).
{ rewrite wp_equiv. applys* triple_conseq_frame triple_get_field_hrecord.
xsimpl. intros r →. xchange (qwand_specialize v). rewrite* hwand_hpure_l. }
{ xpull. }
Qed.
Lemma xapp_set_field_lemma : ∀ H k p v Q,
H ==> \∃ kvs, (hrecord kvs p) \*
match hfields_update k v kvs with
| None ⇒ \[False]
| Some kvs' ⇒ ((fun _ ⇒ hrecord kvs' p) \−−∗ protect Q) end →
H ==> wp (val_set_field k p v) Q.
Proof using.
introv N. xchange N. intros kvs. cases (hfields_update k v kvs).
{ rewrite wp_equiv. applys* triple_conseq_frame triple_set_field_hrecord.
xsimpl. intros r. xchange (qwand_specialize r). }
{ xpull. }
Qed.
Ltac xapp_nosubst_for_records tt ::=
first [ applys xapp_set_field_lemma; xsimpl; simpl; xapp_simpl
| applys xapp_get_field_lemma; xsimpl; simpl; xapp_simpl ].
Deallocation Function for Lists
The operation mfree_list deallocates all the cells in a given list.
It is implemented as a recursive function that invokes mfree_cell
on every cell that it traverses.
let rec mfree_list p =
if p != null then begin
let q = p.tail in
delete p;
mfree_list q
end
if p != null then begin
let q = p.tail in
delete p;
mfree_list q
end
Definition mfree_list : val :=
<{ fix 'f 'p ⇒
let 'b = ('p ≠ null) in
if 'b then
let 'q = 'p`.tail in
delete 'p;
'f 'q
end }>.
<{ fix 'f 'p ⇒
let 'b = ('p ≠ null) in
if 'b then
let 'q = 'p`.tail in
delete 'p;
'f 'q
end }>.
The precondition of mfree_list p requires a full list MList L p.
The postcondition is empty: the entire list is destroyed.
Exercise: 3 stars, standard, especially useful (Triple_mfree_list)
Verify the function mfree_list. Hint: the overall pattern of the proof follows that used for the function triple_mcopy, from chapter Repr.
Lemma triple_mfree_list : ∀ L p,
triple (mfree_list p)
(MList L p)
(fun _ ⇒ \[]).
Proof using. (* FILL IN HERE *) Admitted.
☐
triple (mfree_list p)
(MList L p)
(fun _ ⇒ \[]).
Proof using. (* FILL IN HERE *) Admitted.
☐
Optional Material
Refined Source Language
Note that values of the form val_header k should never be
introduced by source terms. They are only introduced in heaps
by the evaluation of val_alloc, and they should never leak
in program terms.
The operation val_alloc k is specified as shown below. Starting from
a state sa, it produces a state sb \u sa (i.e., the union of sb
and sa), where sb consists of consecutive of k+1 consecutive
cells. The head cell stores the special value val_header k, while
the k following cells store the special value val_uninit, describing
uninitialized cells.
Parameter eval_alloc : ∀ k n sa sb p,
sb = Fmap.conseq (val_header k :: LibList.make k val_uninit) p →
n = nat_to_Z k →
p ≠ null →
Fmap.disjoint sa sb →
eval sa (val_alloc (val_int n)) (sb \u sa) (val_loc p).
sb = Fmap.conseq (val_header k :: LibList.make k val_uninit) p →
n = nat_to_Z k →
p ≠ null →
Fmap.disjoint sa sb →
eval sa (val_alloc (val_int n)) (sb \u sa) (val_loc p).
The operation val_dealloc p is specified as shown below. Assume
a state of the form sb \u sa, where sb consists of consecutive of
k+1 consecutive cells. Assume the first of these cells to store the
special value val_header k. Then, the deallocation operation removes
the block described by sb, and leaves the state sa.
Parameter eval_dealloc : ∀ k vs sa sb p,
sb = Fmap.conseq (val_header k :: vs) p →
k = LibList.length vs →
Fmap.disjoint sa sb →
eval (sb \u sa) (val_dealloc (val_loc p)) sa val_unit.
sb = Fmap.conseq (val_header k :: vs) p →
k = LibList.length vs →
Fmap.disjoint sa sb →
eval (sb \u sa) (val_dealloc (val_loc p)) sa val_unit.
Rather than extending the language with primitive operations
for reading and writing in array cells and record fields,
we simply include a pointer arithmetic operation, named
val_ptr_add, and use it to encode all other access operations.
The operation val_ptr p n applies to a pointer p and an integer n,
and returns the address p+n.
Parameter eval_ptr_add : ∀ p1 p2 n s,
(p2:int) = p1 + n →
eval s (val_ptr_add (val_loc p1) (val_int n)) s (val_loc p2).
(p2:int) = p1 + n →
eval s (val_ptr_add (val_loc p1) (val_int n)) s (val_loc p2).
Note that the specification above allows the integer n to be negative,
as long as p+n is nonnegative. That said, thereafter we only apply
eval_ptr_add to nonnegative arguments.
We also introduce the primitive operation val_length p, which returns
the number stored in the header block at address p. This operation is
useful to implement the function val_array_length, which reads the
length of an array.
Parameter val_length : prim.
Parameter eval_length : ∀ s p k,
Fmap.indom s p →
(val_header k) = Fmap.read s p →
eval s (val_length (val_loc p)) s (val_int k).
Parameter eval_length : ∀ s p k,
Fmap.indom s p →
(val_header k) = Fmap.read s p →
eval s (val_length (val_loc p)) s (val_int k).
Realization of hheader
Like other heap predicates, the definition of hheader is associated
with an introduction and an elimination lemma.
Lemma hheader_intro : ∀ p k,
p ≠ null →
(hheader k p) (Fmap.single p (val_header k)).
Proof using.
introv N. rewrite hheader_def. rewrite hstar_hpure_r.
split*. applys hsingle_intro.
Qed.
Lemma hheader_inv: ∀ h p k,
(hheader k p) h →
h = Fmap.single p (val_header k) ∧ p ≠ null.
Proof using.
introv E. rewrite hheader_def in E. rewrite hstar_hpure_r in E.
split*.
Qed.
p ≠ null →
(hheader k p) (Fmap.single p (val_header k)).
Proof using.
introv N. rewrite hheader_def. rewrite hstar_hpure_r.
split*. applys hsingle_intro.
Qed.
Lemma hheader_inv: ∀ h p k,
(hheader k p) h →
h = Fmap.single p (val_header k) ∧ p ≠ null.
Proof using.
introv E. rewrite hheader_def in E. rewrite hstar_hpure_r in E.
split*.
Qed.
The heap predicate hheader k p captures the invariant p ≠ null.
Lemma hheader_not_null : ∀ p k,
hheader k p ==> hheader k p \* \[p ≠ null].
Proof using. intros. rewrite hheader_def. xsimpl*. Qed.
hheader k p ==> hheader k p \* \[p ≠ null].
Proof using. intros. rewrite hheader_def. xsimpl*. Qed.
The definition of hheader is meant to show that one can prove all
the specifications axiomatized so far. Note, however, that this
definition should not be revealed to the end user. In other words,
it should be made "strongly opaque". (Technically, this could be
achieved by means of a functor in Coq.)
Otherwise, the user could exploit the val_set operation to update
the contents of a header field, replacing p ~~> (val_header k)
with p ~~> v for another value v, thereby compromising the
invariants of the memory model.
Introduction and Elimination Lemmas for hcells and harray
Lemma hcells_intro : ∀ L p,
(hcells L p) (Fmap.conseq L p).
Proof using.
intros L. induction L as [|L']; intros; rew_listx.
{ applys hempty_intro. }
{ simpl. applys hstar_intro.
{ applys* hsingle_intro. }
{ applys IHL. }
{ applys Fmap.disjoint_single_conseq. left. math. } }
Qed.
Lemma hcells_inv : ∀ p L h,
hcells L p h →
h = Fmap.conseq L p.
Proof using.
introv N. gen p h. induction L as [|x L'];
intros; rew_listx; simpls.
{ applys hempty_inv N. }
{ lets (h1&h2&N1&N2&N3&->): hstar_inv N. fequal.
{ applys hsingle_inv N1. }
{ applys IHL' N2. } }
Qed.
Lemma harray_intro : ∀ k p L,
k = length L →
p ≠ null →
(harray L p) (Fmap.conseq (val_header k :: L) p).
Proof using.
introv E n. unfold harray. rew_listx. applys hstar_intro.
{ subst k. applys* hheader_intro. }
{ applys hcells_intro. }
{ applys disjoint_single_conseq. left. math. }
Qed.
Lemma harray_inv : ∀ p L h,
(harray L p) h →
h = (Fmap.conseq (val_header (length L) :: L) p) ∧ p ≠ null.
Proof using.
introv N. unfolds harray. rew_listx.
lets (h1&h2&N1&N2&N3&->): hstar_inv (rm N).
lets (N4&Np): hheader_inv (rm N1).
lets N2': hcells_inv (rm N2). subst*.
Qed.
(hcells L p) (Fmap.conseq L p).
Proof using.
intros L. induction L as [|L']; intros; rew_listx.
{ applys hempty_intro. }
{ simpl. applys hstar_intro.
{ applys* hsingle_intro. }
{ applys IHL. }
{ applys Fmap.disjoint_single_conseq. left. math. } }
Qed.
Lemma hcells_inv : ∀ p L h,
hcells L p h →
h = Fmap.conseq L p.
Proof using.
introv N. gen p h. induction L as [|x L'];
intros; rew_listx; simpls.
{ applys hempty_inv N. }
{ lets (h1&h2&N1&N2&N3&->): hstar_inv N. fequal.
{ applys hsingle_inv N1. }
{ applys IHL' N2. } }
Qed.
Lemma harray_intro : ∀ k p L,
k = length L →
p ≠ null →
(harray L p) (Fmap.conseq (val_header k :: L) p).
Proof using.
introv E n. unfold harray. rew_listx. applys hstar_intro.
{ subst k. applys* hheader_intro. }
{ applys hcells_intro. }
{ applys disjoint_single_conseq. left. math. }
Qed.
Lemma harray_inv : ∀ p L h,
(harray L p) h →
h = (Fmap.conseq (val_header (length L) :: L) p) ∧ p ≠ null.
Proof using.
introv N. unfolds harray. rew_listx.
lets (h1&h2&N1&N2&N3&->): hstar_inv (rm N).
lets (N4&Np): hheader_inv (rm N1).
lets N2': hcells_inv (rm N2). subst*.
Qed.
Proving the Specification of Allocation and Deallocation
Lemma hoare_alloc_nat : ∀ H k,
hoare (val_alloc k)
H
(funloc p ⇒ harray (LibList.make k val_uninit) p \* H).
Proof using.
intros. intros h Hh. sets L: (LibList.make k val_uninit).
sets L': (val_header k :: L).
forwards¬(p&Dp&Np): (Fmap.conseq_fresh null h L').
∃ ((Fmap.conseq L' p) \u h) (val_loc p). split.
{ applys¬(@eval_alloc k). }
{ applys hexists_intro p. rewrite hstar_hpure_l. split*.
{ applys* hstar_intro. applys* harray_intro.
subst L. rew_listx*. } }
Qed.
hoare (val_alloc k)
H
(funloc p ⇒ harray (LibList.make k val_uninit) p \* H).
Proof using.
intros. intros h Hh. sets L: (LibList.make k val_uninit).
sets L': (val_header k :: L).
forwards¬(p&Dp&Np): (Fmap.conseq_fresh null h L').
∃ ((Fmap.conseq L' p) \u h) (val_loc p). split.
{ applys¬(@eval_alloc k). }
{ applys hexists_intro p. rewrite hstar_hpure_l. split*.
{ applys* hstar_intro. applys* harray_intro.
subst L. rew_listx*. } }
Qed.
We then derive the Separation Logic reasoning rule.
Lemma triple_alloc_nat : ∀ k,
triple (val_alloc k)
\[]
(funloc p ⇒ harray (LibList.make k val_uninit) p).
Proof using.
intros. intros H'. applys hoare_conseq.
{ applys hoare_alloc_nat H'. } { xsimpl. } { xsimpl*. }
Qed.
triple (val_alloc k)
\[]
(funloc p ⇒ harray (LibList.make k val_uninit) p).
Proof using.
intros. intros H'. applys hoare_conseq.
{ applys hoare_alloc_nat H'. } { xsimpl. } { xsimpl*. }
Qed.
The two corollaries to triple_alloc_nat follow. The first one
applies to an integer argument, as opposed to a natural number.
Lemma triple_alloc : ∀ n,
n ≥ 0 →
triple (val_alloc n)
\[]
(funloc p ⇒ harray (LibList.make (abs n) val_uninit) p).
Proof using.
introv N. rewrite <- (@abs_nonneg n) at 1; [|auto].
xapp triple_alloc_nat. xsimpl*.
Qed.
n ≥ 0 →
triple (val_alloc n)
\[]
(funloc p ⇒ harray (LibList.make (abs n) val_uninit) p).
Proof using.
introv N. rewrite <- (@abs_nonneg n) at 1; [|auto].
xapp triple_alloc_nat. xsimpl*.
Qed.
The second corollary weakens the postcondition by not specifying
the contents of the allocated cells.
Lemma triple_alloc_array : ∀ n,
n ≥ 0 →
triple (val_alloc n)
\[]
(funloc p ⇒ \∃ L, \[n = length L] \* harray L p).
Proof using.
introv N. xapp triple_alloc. { auto. }
{ xpull. intros p. xsimpl*. { rewrite length_make. rewrite* abs_nonneg. } }
Qed.
n ≥ 0 →
triple (val_alloc n)
\[]
(funloc p ⇒ \∃ L, \[n = length L] \* harray L p).
Proof using.
introv N. xapp triple_alloc. { auto. }
{ xpull. intros p. xsimpl*. { rewrite length_make. rewrite* abs_nonneg. } }
Qed.
We also establish the specification of deallocation, first w.r.t.
Hoare triples, then w.r.t. Separation Logic triples.
Lemma hoare_dealloc : ∀ H L p,
hoare (val_dealloc p)
(harray L p \* H)
(fun _ ⇒ H).
Proof using.
intros. intros h Hh. destruct Hh as (h1&h2&N1&N2&N3&N4). subst h.
∃ h2 val_unit. split; [|auto].
applys* eval_dealloc L. applys harray_inv N1.
Qed.
Lemma triple_dealloc : ∀ L p,
triple (val_dealloc p)
(harray L p)
(fun _ ⇒ \[]).
Proof using.
intros. intros H'. applys hoare_conseq.
{ applys hoare_dealloc H'. } { xsimpl. } { xsimpl. }
Qed.
hoare (val_dealloc p)
(harray L p \* H)
(fun _ ⇒ H).
Proof using.
intros. intros h Hh. destruct Hh as (h1&h2&N1&N2&N3&N4). subst h.
∃ h2 val_unit. split; [|auto].
applys* eval_dealloc L. applys harray_inv N1.
Qed.
Lemma triple_dealloc : ∀ L p,
triple (val_dealloc p)
(harray L p)
(fun _ ⇒ \[]).
Proof using.
intros. intros H'. applys hoare_conseq.
{ applys hoare_dealloc H'. } { xsimpl. } { xsimpl. }
Qed.
Splitting Lemmas for hcells
Lemma hcells_nil_eq : ∀ p,
hcells nil p = \[].
Proof using. auto. Qed.
Lemma hcells_cons_eq : ∀ p x L,
hcells (x::L) p = (p ~~> x) \* hcells L (p+1)%nat.
Proof using. intros. simpl. xsimpl*. Qed.
Lemma hcells_one_eq : ∀ p x L,
hcells (x::nil) p = (p ~~> x).
Proof using. intros. rewrite hcells_cons_eq, hcells_nil_eq. xsimpl. Qed.
Lemma hcells_concat_eq : ∀ p L1 L2,
hcells (L1++L2) p = (hcells L1 p \* hcells L2 (length L1 + p)%nat).
Proof using.
intros. gen p. induction L1; intros; rew_list; simpl.
{ xsimpl. }
{ rewrite IHL1. math_rewrite (length L1 + (p + 1) = S (length L1 + p))%nat.
xsimpl. }
Qed.
hcells nil p = \[].
Proof using. auto. Qed.
Lemma hcells_cons_eq : ∀ p x L,
hcells (x::L) p = (p ~~> x) \* hcells L (p+1)%nat.
Proof using. intros. simpl. xsimpl*. Qed.
Lemma hcells_one_eq : ∀ p x L,
hcells (x::nil) p = (p ~~> x).
Proof using. intros. rewrite hcells_cons_eq, hcells_nil_eq. xsimpl. Qed.
Lemma hcells_concat_eq : ∀ p L1 L2,
hcells (L1++L2) p = (hcells L1 p \* hcells L2 (length L1 + p)%nat).
Proof using.
intros. gen p. induction L1; intros; rew_list; simpl.
{ xsimpl. }
{ rewrite IHL1. math_rewrite (length L1 + (p + 1) = S (length L1 + p))%nat.
xsimpl. }
Qed.
In order to reason about the read or write operation on a specific
cell, we need to isolate this cell from the other cells of the array.
Then, after the operation, we need to fold back to the view on the
entire array.
The isolation process is captured in a general way by the following
"focus lemma". It reads as follows. Assume hcells L p to initially
describe a segment of an array. Then, the k-th cell from this segment
can be isolated as a predicate (p+k) ~~> v, where v denotes the
k-th item of L, that is LibList.nth k L.
What remains of the heap can be described using the magic wand operator
as ((p+k) ~~> v) \−∗ (hcells L p), which captures the idea that when
providing back the cell at location p+k, one regains the ownership of
the original segment.
The following statement describes a focus lemma.
Parameter hcells_focus_read : ∀ k p v L,
k < length L →
v = LibList.nth k L →
hcells L p ==>
((p+k)%nat ~~> v)
\* ((p+k)%nat ~~> v \−∗ hcells L p).
k < length L →
v = LibList.nth k L →
hcells L p ==>
((p+k)%nat ~~> v)
\* ((p+k)%nat ~~> v \−∗ hcells L p).
The above lemma is, however, limited to read operations. Indeed, it imposes
the cell (p+k) ~~> v to be merged back into the array segment, without
modification to the original contents v.
The lemma can be generalized into a form that takes into account the
possibility of folding back the array segment with a modified contents
for the cell at p+k, described by (p+k) ~~> w, for any value w.
The updated segment gets described as update k w L.
Lemma hcells_focus : ∀ k p L,
k < length L →
hcells L p ==>
((p+k)%nat ~~> LibList.nth k L)
\* (\∀ w, ((p+k)%nat ~~> w) \−∗ hcells (LibList.update k w L) p).
Proof using.
introv E. gen k p. induction L as [|x L']; rew_list; intros.
{ false. math. }
{ simpl. rewrite nth_cons_case. case_if.
{ subst. math_rewrite (p + 0 = p)%nat. xsimpl. intros w.
rewrite update_zero. rewrite hcells_cons_eq. xsimpl. }
{ forwards R: IHL' (k-1)%nat (p+1)%nat. { math. }
math_rewrite ((p+1)+(k-1) = p+k)%nat in R. xchange (rm R).
xsimpl. intros w. xchange (hforall_specialize w).
rewrite update_cons_pos; [|math]. rewrite hcells_cons_eq. xsimpl. } }
Qed.
k < length L →
hcells L p ==>
((p+k)%nat ~~> LibList.nth k L)
\* (\∀ w, ((p+k)%nat ~~> w) \−∗ hcells (LibList.update k w L) p).
Proof using.
introv E. gen k p. induction L as [|x L']; rew_list; intros.
{ false. math. }
{ simpl. rewrite nth_cons_case. case_if.
{ subst. math_rewrite (p + 0 = p)%nat. xsimpl. intros w.
rewrite update_zero. rewrite hcells_cons_eq. xsimpl. }
{ forwards R: IHL' (k-1)%nat (p+1)%nat. { math. }
math_rewrite ((p+1)+(k-1) = p+k)%nat in R. xchange (rm R).
xsimpl. intros w. xchange (hforall_specialize w).
rewrite update_cons_pos; [|math]. rewrite hcells_cons_eq. xsimpl. } }
Qed.
The above focus lemma immediately extends to a full array described
in the form harray L p.
Lemma harray_focus : ∀ k p L,
k < length L →
harray L p ==>
((p+1+k)%nat ~~> LibList.nth k L)
\* (\∀ w, ((p+1+k)%nat ~~> w) \−∗ harray (LibList.update k w L) p).
Proof using.
introv E. unfolds harray. xchanges (>> hcells_focus E). intros w.
xchange (hforall_specialize w). xsimpl. rewrite* length_update.
Qed.
k < length L →
harray L p ==>
((p+1+k)%nat ~~> LibList.nth k L)
\* (\∀ w, ((p+1+k)%nat ~~> w) \−∗ harray (LibList.update k w L) p).
Proof using.
introv E. unfolds harray. xchanges (>> hcells_focus E). intros w.
xchange (hforall_specialize w). xsimpl. rewrite* length_update.
Qed.
Specification of Pointer Arithmetic
Lemma hoare_ptr_add : ∀ p n H,
p + n ≥ 0 →
hoare (val_ptr_add p n)
H
(fun r ⇒ \[r = val_loc (abs (p + n))] \* H).
Proof using.
introv N. intros s K0. ∃ s (val_loc (abs (p + n))). split.
{ applys eval_ptr_add. rewrite abs_nonneg; math. }
{ rewrite* hstar_hpure_l. }
Qed.
Lemma triple_ptr_add : ∀ p n,
p + n ≥ 0 →
triple (val_ptr_add p n)
\[]
(fun r ⇒ \[r = val_loc (abs (p + n))]).
Proof using.
introv N. unfold triple. intros H'.
applys* hoare_conseq hoare_ptr_add; xsimpl*.
Qed.
p + n ≥ 0 →
hoare (val_ptr_add p n)
H
(fun r ⇒ \[r = val_loc (abs (p + n))] \* H).
Proof using.
introv N. intros s K0. ∃ s (val_loc (abs (p + n))). split.
{ applys eval_ptr_add. rewrite abs_nonneg; math. }
{ rewrite* hstar_hpure_l. }
Qed.
Lemma triple_ptr_add : ∀ p n,
p + n ≥ 0 →
triple (val_ptr_add p n)
\[]
(fun r ⇒ \[r = val_loc (abs (p + n))]).
Proof using.
introv N. unfold triple. intros H'.
applys* hoare_conseq hoare_ptr_add; xsimpl*.
Qed.
The following lemma specializes the specification for the case
where the argument n is equal to a natural number k. This
reformulation avoids the abs function, and is more practical for
the encodings that we consider further in the subsequent sections.
Lemma triple_ptr_add_nat : ∀ p k,
triple (val_ptr_add p k)
\[]
(fun r ⇒ \[r = val_loc (p+k)%nat]).
Proof using.
intros. applys triple_conseq triple_ptr_add. { math. } { xsimpl. }
{ xsimpl. intros. subst. fequals.
applys eq_nat_of_eq_int. rewrite abs_nonneg; math. }
Qed.
triple (val_ptr_add p k)
\[]
(fun r ⇒ \[r = val_loc (p+k)%nat]).
Proof using.
intros. applys triple_conseq triple_ptr_add. { math. } { xsimpl. }
{ xsimpl. intros. subst. fequals.
applys eq_nat_of_eq_int. rewrite abs_nonneg; math. }
Qed.
Specification of the length Operation to Read the Header
Lemma eval_length_sep : ∀ s s2 p k,
s = Fmap.union (Fmap.single p (val_header k)) s2 →
eval s (val_length (val_loc p)) s (val_int k).
Proof using.
introv →. forwards Dv: Fmap.indom_single p (val_header k).
applys eval_length.
{ applys¬Fmap.indom_union_l. }
{ rewrite¬Fmap.read_union_l. rewrite¬Fmap.read_single. }
Qed.
Lemma hoare_length : ∀ H k p,
hoare (val_length p)
((hheader k p) \* H)
(fun r ⇒ \[r = val_int k] \* (hheader k p) \* H).
Proof using.
intros. intros s K0. ∃ s (val_int k). split.
{ destruct K0 as (s1&s2&P1&P2&D&U). lets (E1&N): hheader_inv P1.
subst s1. applys eval_length_sep U. }
{ rewrite¬hstar_hpure_l. }
Qed.
Lemma triple_length : ∀ k p,
triple (val_length p)
(hheader k p)
(fun r ⇒ \[r = val_int k] \* hheader k p).
Proof using.
intros. unfold triple. intros H'. applys hoare_conseq hoare_length; xsimpl¬.
Qed.
#[global] Hint Resolve triple_length : triple.
s = Fmap.union (Fmap.single p (val_header k)) s2 →
eval s (val_length (val_loc p)) s (val_int k).
Proof using.
introv →. forwards Dv: Fmap.indom_single p (val_header k).
applys eval_length.
{ applys¬Fmap.indom_union_l. }
{ rewrite¬Fmap.read_union_l. rewrite¬Fmap.read_single. }
Qed.
Lemma hoare_length : ∀ H k p,
hoare (val_length p)
((hheader k p) \* H)
(fun r ⇒ \[r = val_int k] \* (hheader k p) \* H).
Proof using.
intros. intros s K0. ∃ s (val_int k). split.
{ destruct K0 as (s1&s2&P1&P2&D&U). lets (E1&N): hheader_inv P1.
subst s1. applys eval_length_sep U. }
{ rewrite¬hstar_hpure_l. }
Qed.
Lemma triple_length : ∀ k p,
triple (val_length p)
(hheader k p)
(fun r ⇒ \[r = val_int k] \* hheader k p).
Proof using.
intros. unfold triple. intros H'. applys hoare_conseq hoare_length; xsimpl¬.
Qed.
#[global] Hint Resolve triple_length : triple.
Encoding of Array Operations using Pointer Arithmetic
Let's first state and prove two auxiliary arithmetic lemmas that
are needed in the proofs below.
Lemma abs_lt_inbound : ∀ i k,
0 ≤ i < nat_to_Z k →
(abs i < k).
Proof using.
introv N. apply lt_nat_of_lt_int. rewrite abs_nonneg; math.
Qed.
Lemma succ_int_plus_abs : ∀ p i,
i ≥ 0 →
((p + 1 + abs i) = abs (nat_to_Z p + (i + 1)))%nat.
Proof using.
introv N. rewrite abs_nat_plus_nonneg; [|math].
math_rewrite (i+1 = 1 + i).
rewrite <- succ_abs_eq_abs_one_plus; math.
Qed.
0 ≤ i < nat_to_Z k →
(abs i < k).
Proof using.
introv N. apply lt_nat_of_lt_int. rewrite abs_nonneg; math.
Qed.
Lemma succ_int_plus_abs : ∀ p i,
i ≥ 0 →
((p + 1 + abs i) = abs (nat_to_Z p + (i + 1)))%nat.
Proof using.
introv N. rewrite abs_nat_plus_nonneg; [|math].
math_rewrite (i+1 = 1 + i).
rewrite <- succ_abs_eq_abs_one_plus; math.
Qed.
The length operation on an array, written val_array_length p,
is encoded as val_length p, where val_length is the
primitive operation for reading the contents of a header.
Definition val_array_length : val := val_length.
Lemma triple_array_length_header : ∀ k p,
triple (val_array_length p)
(hheader k p)
(fun r ⇒ \[r = k] \* hheader k p).
Proof using. intros. applys triple_length. Qed.
Lemma triple_array_length : ∀ L p,
triple (val_array_length p)
(harray L p)
(fun r ⇒ \[r = length L] \* harray L p).
Proof using.
intros. unfold harray. applys triple_conseq_frame triple_length.
{ xsimpl. } { xsimpl. auto. }
Qed.
Lemma triple_array_length_header : ∀ k p,
triple (val_array_length p)
(hheader k p)
(fun r ⇒ \[r = k] \* hheader k p).
Proof using. intros. applys triple_length. Qed.
Lemma triple_array_length : ∀ L p,
triple (val_array_length p)
(harray L p)
(fun r ⇒ \[r = length L] \* harray L p).
Proof using.
intros. unfold harray. applys triple_conseq_frame triple_length.
{ xsimpl. } { xsimpl. auto. }
Qed.
The get operation on an array, written val_array_get p i,
is encoded as val_get (p+i+1).
Definition val_array_get : val :=
<{ fun 'p 'i ⇒
let 'j = 'i + 1 in
let 'n = val_ptr_add 'p 'j in
val_get 'n }>.
Lemma triple_array_get : ∀ p i v L,
0 ≤ i < length L →
LibList.nth (abs i) L = v →
triple (val_array_get p i)
(harray L p)
(fun r ⇒ \[r = v] \* harray L p).
Proof using.
introv N E. xwp. xapp. xapp triple_ptr_add. { math. }
xchange (@harray_focus (abs i) p L).
{ rew_listx. applys* abs_lt_inbound. }
sets w: (LibList.nth (abs i) L). rewrite succ_int_plus_abs; [|math].
xapp triple_get. xchange (hforall_specialize w). subst w.
rewrite update_nth_same. rewrite <- E. xsimpl*.
{ rew_listx. applys* abs_lt_inbound. }
Qed.
<{ fun 'p 'i ⇒
let 'j = 'i + 1 in
let 'n = val_ptr_add 'p 'j in
val_get 'n }>.
Lemma triple_array_get : ∀ p i v L,
0 ≤ i < length L →
LibList.nth (abs i) L = v →
triple (val_array_get p i)
(harray L p)
(fun r ⇒ \[r = v] \* harray L p).
Proof using.
introv N E. xwp. xapp. xapp triple_ptr_add. { math. }
xchange (@harray_focus (abs i) p L).
{ rew_listx. applys* abs_lt_inbound. }
sets w: (LibList.nth (abs i) L). rewrite succ_int_plus_abs; [|math].
xapp triple_get. xchange (hforall_specialize w). subst w.
rewrite update_nth_same. rewrite <- E. xsimpl*.
{ rew_listx. applys* abs_lt_inbound. }
Qed.
The set operation on an array, written val_array_set p i v,
is encoded as val_set (p+i+1) v.
Definition val_array_set : val :=
<{ fun 'p 'i 'v ⇒
let 'j = 'i + 1 in
let 'n = val_ptr_add 'p 'j in
val_set 'n 'v }>.
Lemma triple_array_set : ∀ p i v L,
0 ≤ i < length L →
triple (val_array_set p i v)
(harray L p)
(fun _ ⇒ harray (LibList.update (abs i) v L) p).
Proof using.
introv R. xwp. xpull. xapp. xapp triple_ptr_add. { math. }
xchange (@harray_focus (abs i) p L). { applys* abs_lt_inbound. }
rewrite succ_int_plus_abs; [|math].
xapp triple_set. auto. xchange (hforall_specialize v).
Qed.
End ArrayAccessDef.
<{ fun 'p 'i 'v ⇒
let 'j = 'i + 1 in
let 'n = val_ptr_add 'p 'j in
val_set 'n 'v }>.
Lemma triple_array_set : ∀ p i v L,
0 ≤ i < length L →
triple (val_array_set p i v)
(harray L p)
(fun _ ⇒ harray (LibList.update (abs i) v L) p).
Proof using.
introv R. xwp. xpull. xapp. xapp triple_ptr_add. { math. }
xchange (@harray_focus (abs i) p L). { applys* abs_lt_inbound. }
rewrite succ_int_plus_abs; [|math].
xapp triple_set. auto. xchange (hforall_specialize v).
Qed.
End ArrayAccessDef.
Encoding of Record Operations using Pointer Arithmetic
The get operation on a field, written p`.k,
is encoded as val_get (p+k+1).
Definition val_get_field (k:field) : val :=
<{ fun 'p ⇒
let 'q = val_ptr_add 'p {nat_to_Z (k+1)} in
val_get 'q }>.
Notation "t1 '`.' f" :=
(val_get_field f t1)
(in custom trm at level 56, f at level 0, format "t1 '`.' f" ).
Lemma triple_get_field : ∀ p k v,
triple ((val_get_field k) p)
(p`.k ~~> v)
(fun r ⇒ \[r = v] \* (p`.k ~~> v)).
Proof using.
xwp. xapp triple_ptr_add_nat. unfold hfield.
math_rewrite (p+1+k = p+(k+1))%nat.
xapp triple_get. xsimpl*.
Qed.
<{ fun 'p ⇒
let 'q = val_ptr_add 'p {nat_to_Z (k+1)} in
val_get 'q }>.
Notation "t1 '`.' f" :=
(val_get_field f t1)
(in custom trm at level 56, f at level 0, format "t1 '`.' f" ).
Lemma triple_get_field : ∀ p k v,
triple ((val_get_field k) p)
(p`.k ~~> v)
(fun r ⇒ \[r = v] \* (p`.k ~~> v)).
Proof using.
xwp. xapp triple_ptr_add_nat. unfold hfield.
math_rewrite (p+1+k = p+(k+1))%nat.
xapp triple_get. xsimpl*.
Qed.
The set operation on a field, written Set p`.k := v,
is encoded as val_set (p+k+1) v.
Definition val_set_field (k:field) : val :=
<{ fun 'p 'v ⇒
let 'q = val_ptr_add 'p {nat_to_Z (k+1)} in
val_set 'q 'v }>.
Lemma triple_set_field : ∀ v1 p k v2,
triple ((val_set_field k) p v2)
(p`.k ~~> v1)
(fun _ ⇒ p`.k ~~> v2).
Proof using.
intros. xwp. xapp triple_ptr_add_nat. unfold hfield.
math_rewrite (p+1+k = p+(k+1))%nat.
xapp triple_set. xsimpl*.
Qed.
Notation "t1 '`.' f ':=' t2" :=
(val_set_field f t1 t2)
(in custom trm at level 56, f at level 0, format "t1 '`.' f ':=' t2").
End FieldAccessDef.
<{ fun 'p 'v ⇒
let 'q = val_ptr_add 'p {nat_to_Z (k+1)} in
val_set 'q 'v }>.
Lemma triple_set_field : ∀ v1 p k v2,
triple ((val_set_field k) p v2)
(p`.k ~~> v1)
(fun _ ⇒ p`.k ~~> v2).
Proof using.
intros. xwp. xapp triple_ptr_add_nat. unfold hfield.
math_rewrite (p+1+k = p+(k+1))%nat.
xapp triple_set. xsimpl*.
Qed.
Notation "t1 '`.' f ':=' t2" :=
(val_set_field f t1 t2)
(in custom trm at level 56, f at level 0, format "t1 '`.' f ':=' t2").
End FieldAccessDef.
Specification of Record Operations w.r.t. hfields and hrecord
Lemma triple_get_field_hfields : ∀ kvs p k v,
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hfields kvs p)
(fun r ⇒ \[r = v] \* hfields kvs p).
Proof using.
intros L. induction L as [| [ki vi] L']; simpl; introv E.
{ inverts E. }
{ case_if.
{ inverts E. subst ki. applys triple_conseq_frame.
{ applys triple_get_field. } { xsimpl. } { xsimpl*. } }
{ applys triple_conseq_frame.
{ applys IHL' E. }
{ xsimpl. }
{ xsimpl*. } } }
Qed.
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hfields kvs p)
(fun r ⇒ \[r = v] \* hfields kvs p).
Proof using.
intros L. induction L as [| [ki vi] L']; simpl; introv E.
{ inverts E. }
{ case_if.
{ inverts E. subst ki. applys triple_conseq_frame.
{ applys triple_get_field. } { xsimpl. } { xsimpl*. } }
{ applys triple_conseq_frame.
{ applys IHL' E. }
{ xsimpl. }
{ xsimpl*. } } }
Qed.
Get operation on a record
Lemma triple_get_field_hrecord : ∀ kvs p k v,
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(p ~~~> kvs)
(fun r ⇒ \[r = v] \* p ~~~> kvs).
Proof using.
introv M. unfold hrecord. xtriple. xpull. intros z Hz.
xapp (>> triple_get_field_hfields M). xsimpl*.
Qed.
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(p ~~~> kvs)
(fun r ⇒ \[r = v] \* p ~~~> kvs).
Proof using.
introv M. unfold hrecord. xtriple. xpull. intros z Hz.
xapp (>> triple_get_field_hfields M). xsimpl*.
Qed.
Set operation on a list of fields
Lemma triple_set_field_hfields : ∀ kvs kvs' k p v,
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hfields kvs p)
(fun _ ⇒ hfields kvs' p).
Proof using.
intros kvs. induction kvs as [| [ki vi] kvs']; simpl; introv E.
{ inverts E. }
{ case_if.
{ inverts E. subst ki. applys triple_conseq_frame.
{ applys triple_set_field. } { xsimpl. } { xsimpl*. } }
{ cases (hfields_update k v kvs') as C2; tryfalse. inverts E.
applys triple_conseq_frame. { applys IHkvs' C2. }
{ xsimpl. } { simpl. xsimpl*. } } }
Qed.
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hfields kvs p)
(fun _ ⇒ hfields kvs' p).
Proof using.
intros kvs. induction kvs as [| [ki vi] kvs']; simpl; introv E.
{ inverts E. }
{ case_if.
{ inverts E. subst ki. applys triple_conseq_frame.
{ applys triple_set_field. } { xsimpl. } { xsimpl*. } }
{ cases (hfields_update k v kvs') as C2; tryfalse. inverts E.
applys triple_conseq_frame. { applys IHkvs' C2. }
{ xsimpl. } { simpl. xsimpl*. } } }
Qed.
Auxiliary lemma about hfields_update, showing that the update
operation preserves the names of the fields.
Lemma hfields_update_preserves_fields : ∀ kvs kvs' k v,
hfields_update k v kvs = Some kvs' →
LibList.map fst kvs' = LibList.map fst kvs.
Proof using.
intros kvs. induction kvs as [|[ki vi] kvs1]; simpl; introv E.
{ introv _ H. inverts H. }
{ case_if.
{ inverts E. rew_listx*. subst. fequals. }
{ cases (hfields_update k v kvs1).
{ inverts E. rew_listx. fequals*. }
{ inverts E. } } }
Qed.
Lemma hfields_update_preserves_maps_all_fields : ∀ kvs kvs' z k v,
hfields_update k v kvs = Some kvs' →
maps_all_fields z kvs = maps_all_fields z kvs'.
Proof using.
introv M. unfold maps_all_fields. extens.
rewrites* (>> hfields_update_preserves_fields M).
Qed.
hfields_update k v kvs = Some kvs' →
LibList.map fst kvs' = LibList.map fst kvs.
Proof using.
intros kvs. induction kvs as [|[ki vi] kvs1]; simpl; introv E.
{ introv _ H. inverts H. }
{ case_if.
{ inverts E. rew_listx*. subst. fequals. }
{ cases (hfields_update k v kvs1).
{ inverts E. rew_listx. fequals*. }
{ inverts E. } } }
Qed.
Lemma hfields_update_preserves_maps_all_fields : ∀ kvs kvs' z k v,
hfields_update k v kvs = Some kvs' →
maps_all_fields z kvs = maps_all_fields z kvs'.
Proof using.
introv M. unfold maps_all_fields. extens.
rewrites* (>> hfields_update_preserves_fields M).
Qed.
Set operation on a record
Lemma triple_set_field_hrecord : ∀ kvs kvs' k p v,
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(p ~~~> kvs)
(fun _ ⇒ p ~~~> kvs').
Proof using.
introv M. unfold hrecord. xtriple. xpull. intros z Hz.
xapp (>> triple_set_field_hfields M). xsimpl.
rewrites* <- (>> hfields_update_preserves_maps_all_fields z M).
Qed.
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(p ~~~> kvs)
(fun _ ⇒ p ~~~> kvs').
Proof using.
introv M. unfold hrecord. xtriple. xpull. intros z Hz.
xapp (>> triple_set_field_hfields M). xsimpl.
rewrites* <- (>> hfields_update_preserves_maps_all_fields z M).
Qed.
Specification of Record Allocation and Deallocation
Lemma hfields_eq_hcells_ind : ∀ L p kvs o,
LibList.map fst kvs = nat_seq o (length L) →
L = LibList.map snd kvs →
hfields kvs p = hcells L (p+1+o)%nat.
Proof using.
intros L. induction L as [|v L']; introv M E; rew_listx in *;
destruct kvs as [|[k v'] kvs']; tryfalse; rew_listx in *.
{ auto. }
{ simpls. inverts M as M'. inverts E as E'. rew_listx in *.
unfold hfield. fequals.
math_rewrite (p+1+o+1=p+1+(o+1))%nat. applys* IHL'.
math_rewrite* (o+1=S o)%nat. }
Qed.
LibList.map fst kvs = nat_seq o (length L) →
L = LibList.map snd kvs →
hfields kvs p = hcells L (p+1+o)%nat.
Proof using.
intros L. induction L as [|v L']; introv M E; rew_listx in *;
destruct kvs as [|[k v'] kvs']; tryfalse; rew_listx in *.
{ auto. }
{ simpls. inverts M as M'. inverts E as E'. rew_listx in *.
unfold hfield. fequals.
math_rewrite (p+1+o+1=p+1+(o+1))%nat. applys* IHL'.
math_rewrite* (o+1=S o)%nat. }
Qed.
The statement of the lemma hfields_eq_hcells involves the predicate
maps_all_fields, which appears in the definition of hrecord.
Lemma hfields_eq_hcells : ∀ z L p kvs,
maps_all_fields z kvs →
z = length L →
L = LibList.map snd kvs →
hfields kvs p = hcells L (p+1)%nat.
Proof using.
introv M HL E. subst z. rewrites (>> hfields_eq_hcells_ind M E).
fequals. unfold loc. math.
Qed.
maps_all_fields z kvs →
z = length L →
L = LibList.map snd kvs →
hfields kvs p = hcells L (p+1)%nat.
Proof using.
introv M HL E. subst z. rewrites (>> hfields_eq_hcells_ind M E).
fequals. unfold loc. math.
Qed.
The following lemma converts from the harray view to the hrecord
view, for an array of uninitialized values.
Lemma harray_uninit_himpl_hrecord : ∀ p z,
harray (LibList.make z val_uninit) p ==>
hrecord (LibList.map (fun k ⇒ (k,val_uninit)) (nat_seq 0 z)) p.
Proof using.
intros. unfolds hrecord, harray. rew_listx.
sets kvs: ((LibList.map (fun k ⇒ (k,val_uninit)) (nat_seq 0 z))).
asserts (M1&M2): (LibList.map fst kvs = nat_seq 0 z
∧ LibList.map snd kvs = LibList.make z val_uninit).
{ subst kvs. generalize 0%nat as o.
induction z as [|z']; intros; simpl; rew_listx; simpl.
{ auto. }
{ forwards* (N1&N2): IHz' (S o). split; fequals*. } }
xsimpl z.
{ applys M1. }
{ rewrites* <- (>> hfields_eq_hcells M1). rew_listx*. }
Qed.
harray (LibList.make z val_uninit) p ==>
hrecord (LibList.map (fun k ⇒ (k,val_uninit)) (nat_seq 0 z)) p.
Proof using.
intros. unfolds hrecord, harray. rew_listx.
sets kvs: ((LibList.map (fun k ⇒ (k,val_uninit)) (nat_seq 0 z))).
asserts (M1&M2): (LibList.map fst kvs = nat_seq 0 z
∧ LibList.map snd kvs = LibList.make z val_uninit).
{ subst kvs. generalize 0%nat as o.
induction z as [|z']; intros; simpl; rew_listx; simpl.
{ auto. }
{ forwards* (N1&N2): IHz' (S o). split; fequals*. } }
xsimpl z.
{ applys M1. }
{ rewrites* <- (>> hfields_eq_hcells M1). rew_listx*. }
Qed.
Exploiting the above lemma, we derive the specification of record
allocation.
Lemma triple_alloc_hrecord : ∀ ks,
ks = nat_seq 0 (LibListExec.length ks) →
triple (val_alloc_hrecord ks)
\[]
(funloc p ⇒ hrecord (LibListExec.map (fun k ⇒ (k,val_uninit)) ks) p).
Proof using.
introv E. xapp triple_alloc_nat. intros p.
xsimpl p. { auto. } rewrite E. rewrite length_nat_seq.
rewrite LibListExec.map_eq. xchange harray_uninit_himpl_hrecord.
Qed.
ks = nat_seq 0 (LibListExec.length ks) →
triple (val_alloc_hrecord ks)
\[]
(funloc p ⇒ hrecord (LibListExec.map (fun k ⇒ (k,val_uninit)) ks) p).
Proof using.
introv E. xapp triple_alloc_nat. intros p.
xsimpl p. { auto. } rewrite E. rewrite length_nat_seq.
rewrite LibListExec.map_eq. xchange harray_uninit_himpl_hrecord.
Qed.
The following lemma converts in the other direction, from the hrecord
view to the harray view.
Lemma hrecord_himpl_harray : ∀ p kvs,
hrecord kvs p ==> harray (LibList.map snd kvs) p.
Proof using.
intros. unfolds hrecord, harray. xpull. intros z M.
asserts Hz: (z = length kvs).
{ lets E: length_nat_seq 0%nat z. rewrite <- M in E. rew_listx* in *. }
xchange* (>> hfields_eq_hcells p M). { rew_listx*. }
xsimpl. rew_listx. rewrite* Hz.
Qed.
hrecord kvs p ==> harray (LibList.map snd kvs) p.
Proof using.
intros. unfolds hrecord, harray. xpull. intros z M.
asserts Hz: (z = length kvs).
{ lets E: length_nat_seq 0%nat z. rewrite <- M in E. rew_listx* in *. }
xchange* (>> hfields_eq_hcells p M). { rew_listx*. }
xsimpl. rew_listx. rewrite* Hz.
Qed.
Exploiting the above lemma, we derive the specification of record
deallocation.
Lemma triple_dealloc_hrecord : ∀ kvs p,
triple (val_dealloc p)
(hrecord kvs p)
(fun _ ⇒ \[]).
Proof using.
intros. xtriple. xchange hrecord_himpl_harray.
xapp triple_dealloc. xsimpl.
Qed.
End Realization.
(* 2023-12-24 13:00 *)
triple (val_dealloc p)
(hrecord kvs p)
(fun _ ⇒ \[]).
Proof using.
intros. xtriple. xchange hrecord_himpl_harray.
xapp triple_dealloc. xsimpl.
Qed.
End Realization.
(* 2023-12-24 13:00 *)