RecordsReasoning about Records
Set Implicit Arguments.
From SLF Require Import LibSepReference LibSepTLCbuffer.
From SLF Require Import Arrays. Import Realization.
Implicit Types P : Prop.
Implicit Types H : hprop.
Implicit Types Q : val→hprop.
Implicit Type p q : loc.
Implicit Type k : nat.
Implicit Type i : int.
Implicit Type n z : nat.
Implicit Type v : val.
Implicit Type L : list val.
From SLF Require Import LibSepReference LibSepTLCbuffer.
From SLF Require Import Arrays. Import Realization.
Implicit Types P : Prop.
Implicit Types H : hprop.
Implicit Types Q : val→hprop.
Implicit Type p q : loc.
Implicit Type k : nat.
Implicit Type i : int.
Implicit Type n z : nat.
Implicit Type v : val.
Implicit Type L : list val.
First Pass
- a header at location p, storing the number of fields, that is, the value 2;
- a cell at location p+1, storing the contents of the head field,
- a cell at location p+2, storing the contents of the tail field.
Representation of Individual Record Fields
The predicate hfield p k v, written p`.k ~~> v, asserts that the field
k of the record p stores the value v. This predicate is presented as
an abstract predicate to the end user. Internally, it may be defined using
pointer arithmetic.
Definition hfield (p:loc) (k:field) (v:val) : hprop :=
(p+1+k)%nat ~~> v.
Global Opaque hfield.
Notation "p `. k '~~>' v" := (hfield p k v)
(at level 32, k at level 0, no associativity,
format "p `. k '~~>' v").
(p+1+k)%nat ~~> v.
Global Opaque hfield.
Notation "p `. k '~~>' v" := (hfield p k v)
(at level 32, k at level 0, no associativity,
format "p `. k '~~>' v").
Writing (hheader 2 p) \* (p`.head ~~> x) \* (p`.tail ~~> q) to describe a
list cell record is fairly verbose and cumbersome to manipulate. To improve
the situation, we introduce a generic representation predicate for records.
This predicate allows us to describe the same list cell much more concisely
as p ~~~>`{ head := x; tail := q }.
It what follows, we show how to implement this notation by introducing the
heap predicates hfields and hrecords. These predicates will be used for
stating both small-footprint and large-footprint specifications for record
operations.
Representation of Sets of Fields
A record is described as a list of fields.
We let the meta-variable kvs range over such lists.
The heap predicate hfields kvs p asserts that, at location p, one finds
the representation of the fields described by the list kvs. The predicate
hfields kvs p is defined recursively on the list kvs. If kvs is empty,
the predicate describes the empty heap predicate. Otherwise, kvs
decomposes as a head (k,v) and a tail kvs'. The predicate p`.k ~~> v
describes the field at offset k, with contents v. The predicate
hfields kvs' p describes the remaining fields.
Fixpoint hfields (kvs:hrecord_fields) (p:loc) : hprop :=
match kvs with
| nil ⇒ \[]
| (k,v)::kvs' ⇒ (p`.k ~~> v) \* (hfields kvs' p)
end.
match kvs with
| nil ⇒ \[]
| (k,v)::kvs' ⇒ (p`.k ~~> v) \* (hfields kvs' p)
end.
A list cell with head field x and tail field q is represented by the
list (head,x)::(tail,q)::nil. To support the syntax
`{ head := x; tail := q }, we introduce the following notation. For
technical reasons associated with coercions, we need to separately define
notation for parsing, where a cast to the type val is included, from
notation for printing, where such a cast is not included.
Notation "`{ k1 := v1 }" :=
((k1,(v1:val))::nil)
(at level 0, k1 at level 0, only parsing).
Notation "`{ k1 := v1 ; k2 := v2 }" :=
((k1,(v1:val))::(k2,(v2:val))::nil)
(at level 0, k1, k2 at level 0, only parsing).
Notation "`{ k1 := v1 ; k2 := v2 ; k3 := v3 }" :=
((k1,(v1:val))::(k2,(v2:val))::(k3,(v3:val))::nil)
(at level 0, k1, k2, k3 at level 0, only parsing).
Notation "`{ k1 := v1 }" :=
((k1,v1)::nil)
(at level 0, k1 at level 0, only printing).
Notation "`{ k1 := v1 ; k2 := v2 }" :=
((k1,v1)::(k2,v2)::nil)
(at level 0, k1, k2 at level 0, only printing).
Notation "`{ k1 := v1 ; k2 := v2 ; k3 := v3 }" :=
((k1,v1)::(k2,v2)::(k3,v3)::nil)
(at level 0, k1, k2, k3 at level 0, only printing).
Open Scope val_scope.
((k1,(v1:val))::nil)
(at level 0, k1 at level 0, only parsing).
Notation "`{ k1 := v1 ; k2 := v2 }" :=
((k1,(v1:val))::(k2,(v2:val))::nil)
(at level 0, k1, k2 at level 0, only parsing).
Notation "`{ k1 := v1 ; k2 := v2 ; k3 := v3 }" :=
((k1,(v1:val))::(k2,(v2:val))::(k3,(v3:val))::nil)
(at level 0, k1, k2, k3 at level 0, only parsing).
Notation "`{ k1 := v1 }" :=
((k1,v1)::nil)
(at level 0, k1 at level 0, only printing).
Notation "`{ k1 := v1 ; k2 := v2 }" :=
((k1,v1)::(k2,v2)::nil)
(at level 0, k1, k2 at level 0, only printing).
Notation "`{ k1 := v1 ; k2 := v2 ; k3 := v3 }" :=
((k1,v1)::(k2,v2)::(k3,v3)::nil)
(at level 0, k1, k2, k3 at level 0, only printing).
Open Scope val_scope.
Representation of Records
Definition maps_all_fields (n:nat) (kvs:hrecord_fields) : Prop :=
LibList.map fst kvs = nat_seq 0 n.
LibList.map fst kvs = nat_seq 0 n.
The predicate hrecord kvs p exploits maps_all_fields n kvs to relate the
value n stored in the header with the association list kvs that
describes the contents of the fields.
Definition hrecord (kvs:hrecord_fields) (p:loc) : hprop :=
\∃ n, hheader n p \* hfields kvs p \* \[maps_all_fields n kvs].
\∃ n, hheader n p \* hfields kvs p \* \[maps_all_fields n kvs].
We introduce the notation p ~~~> kvs for hrecord kvs p, allowing to
write, e.g., p ~~~>`{ head := x; tail := q }.
The following lemma may be used to convert a concrete hrecord predicate
into a hheader and a conjunction of hfield predicates. In the statement
below, LibListExec.length is a variant of LibList.length that computes
in Coq using simpl or reflexivity.
Lemma hrecord_elim : ∀ p kvs,
hrecord kvs p ==> hheader (LibListExec.length kvs) p \* hfields kvs p.
Proof using.
intros. unfold hrecord. xpull. intros z Hz. xsimpl. xsimpl.
rewrite LibListExec.length_eq. applys himpl_of_eq. fequal. gen Hz.
unfold maps_all_fields. generalize 0%nat. gen z.
induction kvs; intros; destruct z as [|z']; rew_listx in *; tryfalse.
{ math. } { inverts Hz. forwards*: IHkvs H1. math. }
Qed.
hrecord kvs p ==> hheader (LibListExec.length kvs) p \* hfields kvs p.
Proof using.
intros. unfold hrecord. xpull. intros z Hz. xsimpl. xsimpl.
rewrite LibListExec.length_eq. applys himpl_of_eq. fequal. gen Hz.
unfold maps_all_fields. generalize 0%nat. gen z.
induction kvs; intros; destruct z as [|z']; rew_listx in *; tryfalse.
{ math. } { inverts Hz. forwards*: IHkvs H1. math. }
Qed.
For example, let us show how to convert from
p ~~~> `{ head := x ; tail := q } to the conjunction of hheader 2 p and
p`.head ~~> x and p`.tail ~~> q.
Definition head : field := 0%nat.
Definition tail : field := 1%nat.
Lemma demo_hrecord_intro_elim : ∀ p x q,
p ~~~> `{ head := x ; tail := q } ==> \[].
Proof using. intros. xchange hrecord_elim; simpl. Abort.
Definition tail : field := 1%nat.
Lemma demo_hrecord_intro_elim : ∀ p x q,
p ~~~> `{ head := x ; tail := q } ==> \[].
Proof using. intros. xchange hrecord_elim; simpl. Abort.
Declare Scope trm_scope_ext.
The read operation is described by an expression of the form
val_get_field k p, where k denotes a field name and p denotes the
location of a record.
Observe that k is not a program value of type val, but rather a name
for a natural number.
The expression val_get_field has type field → val, and for a given
field k the expression val_get_field k is a value, which may be applied
in the program syntax to a pointer p.
The read operation val_get_field k p is written p`.k.
Notation "t1 '`.' k" :=
(val_get_field k t1)
(in custom trm at level 56, k at level 0, format "t1 '`.' k" )
: trm_scope_ext.
(val_get_field k t1)
(in custom trm at level 56, k at level 0, format "t1 '`.' k" )
: trm_scope_ext.
The operation val_get_field k p can be specified at three levels.
First, its small-footprint specification operates at the level of a single
field, described by p`.k ~~> v. The specification is very similar to that
of val_get. The return value is exactly v.
Parameter triple_get_field : ∀ p k v,
triple (val_get_field k p)
(p`.k ~~> v)
(fun r ⇒ \[r = v] \* (p`.k ~~> v)).
triple (val_get_field k p)
(p`.k ~~> v)
(fun r ⇒ \[r = v] \* (p`.k ~~> v)).
Second, the read operation val_get_field can be specified with respect to
a list of fields, described in the form hfields kvs p. To that end, we
introduce a function called hfields_lookup for extracting the value v
associated with a field k in a list of record fields kvs. Note that the
operation hfields_lookup k kvs returns an option val, because we cannot
presume that the field k occurs in kvs.
Fixpoint hfields_lookup (k:field) (kvs:hrecord_fields) : option val :=
match kvs with
| nil ⇒ None
| (ki,vi)::kvs' ⇒ if Nat.eq_dec k ki
then Some vi
else hfields_lookup k kvs'
end.
match kvs with
| nil ⇒ None
| (ki,vi)::kvs' ⇒ if Nat.eq_dec k ki
then Some vi
else hfields_lookup k kvs'
end.
Under the assumption that hfields_lookup k kvs returns Some v, the read
operation val_get_field k p is specified to return v.
Parameter triple_get_field_hfields : ∀ kvs p k v,
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hfields kvs p)
(fun r ⇒ \[r = v] \* hfields kvs p).
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hfields kvs p)
(fun r ⇒ \[r = v] \* hfields kvs p).
Third, the read operation val_get_field can be specified with respect to
the predicate hrecord kvs p, describing the full record, including its
header. The corresponding specification shown below follows a similar
pattern as the specification of hfield.
Parameter triple_get_field_hrecord : ∀ kvs p k v,
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hrecord kvs p)
(fun r ⇒ \[r = v] \* hrecord kvs p).
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hrecord kvs p)
(fun r ⇒ \[r = v] \* hrecord kvs p).
Reasoning about Writes To Record Fields
The operation val_set_field k p v is abbreviated Set p`.k ':= v.
Notation "t1 '`.' k ':=' t2" :=
(val_set_field k t1 t2)
(in custom trm at level 56, k at level 0, format "t1 '`.' k ':=' t2")
: trm_scope_ext.
(val_set_field k t1 t2)
(in custom trm at level 56, k at level 0, format "t1 '`.' k ':=' t2")
: trm_scope_ext.
As for the read operation, the write operation can be specified at three
levels. First, it may be specified at the level of an individual field.
Parameter triple_set_field : ∀ v p k v',
triple (val_set_field k p v)
(p`.k ~~> v')
(fun _ ⇒ p`.k ~~> v).
triple (val_set_field k p v)
(p`.k ~~> v')
(fun _ ⇒ p`.k ~~> v).
Alternatively, it may be specified in terms of hfields or hrecord, using
an auxiliary function called hrecord_update. This function computes an
updated list of fields to reflect the action of a write operation.
Concretely, hrecord_update k w kvs replaces the contents of the field
named k with the value w. It returns a description kvs' of the record
fields, provided the update operation succeeded, i.e., provided that the
field k on which the update is to be performed actually occurs in the list
kvs.
Fixpoint hfields_update (k:field) (v:val) (kvs:hrecord_fields)
: option hrecord_fields :=
match kvs with
| nil ⇒ None
| (ki,vi)::kvs' ⇒ if Nat.eq_dec k ki
then Some ((k,v)::kvs')
else match hfields_update k v kvs' with
| None ⇒ None
| Some LR ⇒ Some ((ki,vi)::LR)
end
end.
: option hrecord_fields :=
match kvs with
| nil ⇒ None
| (ki,vi)::kvs' ⇒ if Nat.eq_dec k ki
then Some ((k,v)::kvs')
else match hfields_update k v kvs' with
| None ⇒ None
| Some LR ⇒ Some ((ki,vi)::LR)
end
end.
The specification in terms of hfields is as follows.
Parameter triple_set_field_hfields : ∀ kvs kvs' k p v,
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hfields kvs p)
(fun _ ⇒ hfields kvs' p).
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hfields kvs p)
(fun _ ⇒ hfields kvs' p).
The specification in terms of hrecord follows a similar pattern.
Parameter triple_set_field_hrecord : ∀ kvs kvs' k p v,
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hrecord kvs p)
(fun _ ⇒ hrecord kvs' p).
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hrecord kvs p)
(fun _ ⇒ hrecord kvs' p).
Reasoning about Record Allocation with Initializers
Parameter val_new_hrecord_2 : field → field → val.
Notation "`{ k1 := v1 ; k2 := v2 }" :=
(val_new_hrecord_2 k1 k2 v1 v2)
(in custom trm at level 65,
k1, k2 at level 0,
v1, v2 at level 65).
Notation "`{ k1 := v1 ; k2 := v2 }" :=
(val_new_hrecord_2 k1 k2 v1 v2)
(in custom trm at level 65,
k1, k2 at level 0,
v1, v2 at level 65).
The record allocation operation `{ k1 := v1 ; k2 := v2 } is specified as
follows. The premises k1 = 0 and k2 = 1 enforce the field names to be
provided in increasing order, starting from zero. The postcondition
describes a record at address p using the predicate
p ~~~> `{ k1 := v1 ; k2 := v2 }, i.e.,
hrecord ((k1,v1)::(k2,v2)::nil) p.
Parameter triple_new_hrecord_2 : ∀ (k1 k2:field) (v1 v2:val),
k1 = 0%nat →
k2 = 1%nat →
triple <{ `{ k1 := v1; k2 := v2 } }>
\[]
(funloc p ⇒ p ~~~> `{ k1 := v1 ; k2 := v2 }).
k1 = 0%nat →
k2 = 1%nat →
triple <{ `{ k1 := v1; k2 := v2 } }>
\[]
(funloc p ⇒ p ~~~> `{ k1 := v1 ; k2 := v2 }).
For example, the operation mcons x q allocates a list cell with head value
x and tail pointer q.
Definition mcons : val :=
val_new_hrecord_2 head tail.
Lemma triple_mcons : ∀ (x q:val),
triple (mcons x q)
\[]
(funloc p ⇒ p ~~~> `{ head := x ; tail := q }).
Proof using. intros. applys* triple_new_hrecord_2. Qed.
val_new_hrecord_2 head tail.
Lemma triple_mcons : ∀ (x q:val),
triple (mcons x q)
\[]
(funloc p ⇒ p ~~~> `{ head := x ; tail := q }).
Proof using. intros. applys* triple_new_hrecord_2. Qed.
This completes the presentation of the formalization of the mechanisms for
reasoning about records. These mechanisms were illustrated throughout the
chapter Repr.
In this section, we explain how val_get_field, val_set_field, and
val_new_hrecord_2 can be realized in terms of block allocation and pointer
arithmetic, following the same approach as in the previous chapter on
arrays. In particular, we use a similar proof set up.
Global Transparent hfield.
#[local] Hint Extern 1 (_ ≥ _) ⇒ math : triple.
Ltac is_additional_arith_type T ::=
match T with
| loc ⇒ constr:(true)
| field ⇒ constr:(true)
end.
#[local] Hint Extern 1 (_ ≥ _) ⇒ math : triple.
Ltac is_additional_arith_type T ::=
match T with
| loc ⇒ constr:(true)
| field ⇒ constr:(true)
end.
Implementation of Record Accesses using Pointer Arithmetic
Definition val_get_field (k:field) : val :=
<{ fun 'p ⇒
let 'p1 = val_ptr_add 'p 1 in
let 'q = val_ptr_add 'p1 {nat_to_Z k} in
val_get 'q }>.
Notation "t1 '`.' f" :=
(val_get_field f t1)
(in custom trm at level 56, f at level 0, format "t1 '`.' f" ).
#[export]Hint Resolve triple_ptr_add_nonneg : triple.
Lemma triple_get_field : ∀ p k v,
triple ((val_get_field k) p)
(p`.k ~~> v)
(fun r ⇒ \[r = v] \* (p`.k ~~> v)).
Proof using.
unfold hfield. xwp. xapp. xapp. unfolds field.
math_rewrite (p + abs 1 + abs k = p+1+k)%nat. xapp. xsimpl*.
Qed.
<{ fun 'p ⇒
let 'p1 = val_ptr_add 'p 1 in
let 'q = val_ptr_add 'p1 {nat_to_Z k} in
val_get 'q }>.
Notation "t1 '`.' f" :=
(val_get_field f t1)
(in custom trm at level 56, f at level 0, format "t1 '`.' f" ).
#[export]Hint Resolve triple_ptr_add_nonneg : triple.
Lemma triple_get_field : ∀ p k v,
triple ((val_get_field k) p)
(p`.k ~~> v)
(fun r ⇒ \[r = v] \* (p`.k ~~> v)).
Proof using.
unfold hfield. xwp. xapp. xapp. unfolds field.
math_rewrite (p + abs 1 + abs k = p+1+k)%nat. xapp. xsimpl*.
Qed.
The set operation on a field, written Set p`.k := v, is encoded as
val_set (p+1+k) v.
Definition val_set_field (k:field) : val :=
<{ fun 'p 'v ⇒
let 'p1 = val_ptr_add 'p 1 in
let 'q = val_ptr_add 'p1 {nat_to_Z k} in
val_set 'q 'v }>.
Lemma triple_set_field : ∀ v1 p k v2,
triple ((val_set_field k) p v2)
(p`.k ~~> v1)
(fun _ ⇒ p`.k ~~> v2).
Proof using.
unfold hfield. intros. xwp. xapp. xapp.
math_rewrite (p + abs 1 + abs k = p+1+k)%nat. xapp. xsimpl.
Qed.
Notation "t1 '`.' f ':=' t2" :=
(val_set_field f t1 t2)
(in custom trm at level 56, f at level 0, format "t1 '`.' f ':=' t2").
<{ fun 'p 'v ⇒
let 'p1 = val_ptr_add 'p 1 in
let 'q = val_ptr_add 'p1 {nat_to_Z k} in
val_set 'q 'v }>.
Lemma triple_set_field : ∀ v1 p k v2,
triple ((val_set_field k) p v2)
(p`.k ~~> v1)
(fun _ ⇒ p`.k ~~> v2).
Proof using.
unfold hfield. intros. xwp. xapp. xapp.
math_rewrite (p + abs 1 + abs k = p+1+k)%nat. xapp. xsimpl.
Qed.
Notation "t1 '`.' f ':=' t2" :=
(val_set_field f t1 t2)
(in custom trm at level 56, f at level 0, format "t1 '`.' f ':=' t2").
Specification of Record Accesses w.r.t. hfields
Lemma triple_get_field_hfields : ∀ kvs p k v,
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hfields kvs p)
(fun r ⇒ \[r = v] \* hfields kvs p).
Proof using.
intros L. induction L as [| [ki vi] L']; simpl; introv E.
{ inverts E. }
{ case_if.
{ inverts E. subst ki. applys triple_conseq_frame.
{ applys triple_get_field. } { xsimpl. } { xsimpl*. } }
{ applys triple_conseq_frame.
{ applys IHL' E. }
{ xsimpl. }
{ xsimpl*. } } }
Qed.
Lemma triple_set_field_hfields : ∀ kvs kvs' k p v,
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hfields kvs p)
(fun _ ⇒ hfields kvs' p).
Proof using.
intros kvs. induction kvs as [| [ki vi] kvs']; simpl; introv E.
{ inverts E. }
{ case_if.
{ inverts E. subst ki. applys triple_conseq_frame.
{ applys triple_set_field. } { xsimpl. } { xsimpl*. } }
{ cases (hfields_update k v kvs') as C2; tryfalse. inverts E.
applys triple_conseq_frame. { applys IHkvs' C2. }
{ xsimpl. } { simpl. xsimpl*. } } }
Qed.
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hfields kvs p)
(fun r ⇒ \[r = v] \* hfields kvs p).
Proof using.
intros L. induction L as [| [ki vi] L']; simpl; introv E.
{ inverts E. }
{ case_if.
{ inverts E. subst ki. applys triple_conseq_frame.
{ applys triple_get_field. } { xsimpl. } { xsimpl*. } }
{ applys triple_conseq_frame.
{ applys IHL' E. }
{ xsimpl. }
{ xsimpl*. } } }
Qed.
Lemma triple_set_field_hfields : ∀ kvs kvs' k p v,
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hfields kvs p)
(fun _ ⇒ hfields kvs' p).
Proof using.
intros kvs. induction kvs as [| [ki vi] kvs']; simpl; introv E.
{ inverts E. }
{ case_if.
{ inverts E. subst ki. applys triple_conseq_frame.
{ applys triple_set_field. } { xsimpl. } { xsimpl*. } }
{ cases (hfields_update k v kvs') as C2; tryfalse. inverts E.
applys triple_conseq_frame. { applys IHkvs' C2. }
{ xsimpl. } { simpl. xsimpl*. } } }
Qed.
Specification of Record Accesses w.r.t. hrecord
Lemma triple_get_field_hrecord : ∀ kvs p k v,
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hrecord kvs p)
(fun r ⇒ \[r = v] \* hrecord kvs p).
Proof using.
introv M. unfold hrecord. xtriple. xpull. intros z Hz.
xapp (>> triple_get_field_hfields M). xsimpl*.
Qed.
hfields_lookup k kvs = Some v →
triple (val_get_field k p)
(hrecord kvs p)
(fun r ⇒ \[r = v] \* hrecord kvs p).
Proof using.
introv M. unfold hrecord. xtriple. xpull. intros z Hz.
xapp (>> triple_get_field_hfields M). xsimpl*.
Qed.
For val_set_field, however, we need an auxiliary lemma about
hfields_update, showing that the update operation preserves the names of
the fields. This lemma is established in two steps.
Lemma hfields_update_preserves_fields : ∀ kvs kvs' k v,
hfields_update k v kvs = Some kvs' →
LibList.map fst kvs' = LibList.map fst kvs.
Proof using.
intros kvs. induction kvs as [|[ki vi] kvs1]; simpl; introv E.
{ introv _ H. inverts H. }
{ case_if.
{ inverts E. rew_listx*. subst. fequals. }
{ cases (hfields_update k v kvs1).
{ inverts E. rew_listx. fequals*. }
{ inverts E. } } }
Qed.
Lemma hfields_update_preserves_maps_all_fields : ∀ kvs kvs' z k v,
hfields_update k v kvs = Some kvs' →
maps_all_fields z kvs = maps_all_fields z kvs'.
Proof using.
introv M. unfold maps_all_fields. extens.
rewrites* (>> hfields_update_preserves_fields M).
Qed.
hfields_update k v kvs = Some kvs' →
LibList.map fst kvs' = LibList.map fst kvs.
Proof using.
intros kvs. induction kvs as [|[ki vi] kvs1]; simpl; introv E.
{ introv _ H. inverts H. }
{ case_if.
{ inverts E. rew_listx*. subst. fequals. }
{ cases (hfields_update k v kvs1).
{ inverts E. rew_listx. fequals*. }
{ inverts E. } } }
Qed.
Lemma hfields_update_preserves_maps_all_fields : ∀ kvs kvs' z k v,
hfields_update k v kvs = Some kvs' →
maps_all_fields z kvs = maps_all_fields z kvs'.
Proof using.
introv M. unfold maps_all_fields. extens.
rewrites* (>> hfields_update_preserves_fields M).
Qed.
We are then ready to derive the specification for val_set_field.
Lemma triple_set_field_hrecord : ∀ kvs kvs' k p v,
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hrecord kvs p)
(fun _ ⇒ hrecord kvs' p).
Proof using.
introv M. unfold hrecord. xtriple. xpull. intros z Hz.
xapp (>> triple_set_field_hfields M). xsimpl.
rewrites* <- (>> hfields_update_preserves_maps_all_fields z M).
Qed.
hfields_update k v kvs = Some kvs' →
triple (val_set_field k p v)
(hrecord kvs p)
(fun _ ⇒ hrecord kvs' p).
Proof using.
introv M. unfold hrecord. xtriple. xpull. intros z Hz.
xapp (>> triple_set_field_hfields M). xsimpl.
rewrites* <- (>> hfields_update_preserves_maps_all_fields z M).
Qed.
Implementation of Record Allocation without Initialization
Definition val_alloc_hrecord (ks:list field) : val :=
<{ fun 'v ⇒
let 'm = {LibListExec.length ks} + 1 in
let 'p = val_alloc 'm in
val_set 'p {LibListExec.length ks};
'p }>.
<{ fun 'v ⇒
let 'm = {LibListExec.length ks} + 1 in
let 'p = val_alloc 'm in
val_set 'p {LibListExec.length ks};
'p }>.
A key auxiliary result asserts that, if kvs is a list of key-value pairs
such that the keys correspond to consecutive field names, then a list of
fields described as hfields kvs p corresponds to a range of consecutive
cells as described by hrange (List.map snd kvs) (p+1), for the definition
of hrange given in Arrays.
Lemma hfields_eq_hrange : ∀ z L p kvs,
maps_all_fields z kvs →
z = length L →
L = LibList.map snd kvs →
hfields kvs p = hrange L (p+1)%nat.
Proof using.
asserts Ind: (∀ L p kvs o,
LibList.map fst kvs = nat_seq o (length L) →
L = LibList.map snd kvs →
hfields kvs p = hrange L (p+1+o)%nat).
{ intros L. induction L as [|v L']; introv M E; rew_listx in *;
destruct kvs as [|[k v'] kvs']; tryfalse; rew_listx in *.
{ auto. }
{ simpls. inverts M as M'. inverts E as E'. rew_listx in *.
unfold hfield. fequals. math_rewrite (p+1+o+1=p+1+(o+1))%nat.
applys* IHL'. math_rewrite* (o+1=S o)%nat. } }
introv M HL E. subst z. rewrites (>> Ind M E). fequals. unfold loc. math.
Qed.
maps_all_fields z kvs →
z = length L →
L = LibList.map snd kvs →
hfields kvs p = hrange L (p+1)%nat.
Proof using.
asserts Ind: (∀ L p kvs o,
LibList.map fst kvs = nat_seq o (length L) →
L = LibList.map snd kvs →
hfields kvs p = hrange L (p+1+o)%nat).
{ intros L. induction L as [|v L']; introv M E; rew_listx in *;
destruct kvs as [|[k v'] kvs']; tryfalse; rew_listx in *.
{ auto. }
{ simpls. inverts M as M'. inverts E as E'. rew_listx in *.
unfold hfield. fequals. math_rewrite (p+1+o+1=p+1+(o+1))%nat.
applys* IHL'. math_rewrite* (o+1=S o)%nat. } }
introv M HL E. subst z. rewrites (>> Ind M E). fequals. unfold loc. math.
Qed.
The specification of val_alloc_hrecord ks involves an empty precondition
and a postcondition of the form hrecord kvs p, where the list kvs maps
the fields names from ks to the value val_uninit. The premise
ks = nat_seq 0 (length ks) checks that the list ks contains consecutive
offsets starting from zero.
Recall that LibListExec.length is a variant of LibList.length that
computes in Coq (using simpl or reflexivity). Likewise LibListExec.map
is a computable version of LibList.map.
Lemma triple_alloc_hrecord : ∀ ks,
ks = nat_seq 0 (LibListExec.length ks) →
triple ((val_alloc_hrecord ks) ())
\[]
(funloc p ⇒ hrecord (LibListExec.map (fun k ⇒ (k,val_uninit)) ks) p).
Proof using.
introv Hks. xwp. xapp. xapp. intros p Hp. unfolds field.
rewrite LibListExec.length_eq in *. set (n := length ks) in *.
math_rewrite (abs (n + 1) = S n). rew_listx. simpl.
xapp. xval. xsimpl*. unfold hrecord. autorewrite with rew_list_exec.
asserts R: (maps_all_fields n (LibList.map (fun k ⇒ (k, val_uninit)) ks)).
{ unfolds. rewrite Hks. clears ks p. generalize 0%nat as o.
induction n as [|n']; intros; simpl; rew_listx; fequals*. }
xsimpl* n. xchange* <- (@hfields_eq_hrange n). { rew_listx*. }
{ unfold n. clears n p. induction ks as [|ks']; rew_listx; fequals*. }
Qed.
#[global] Hint Resolve triple_alloc_hrecord : triple.
ks = nat_seq 0 (LibListExec.length ks) →
triple ((val_alloc_hrecord ks) ())
\[]
(funloc p ⇒ hrecord (LibListExec.map (fun k ⇒ (k,val_uninit)) ks) p).
Proof using.
introv Hks. xwp. xapp. xapp. intros p Hp. unfolds field.
rewrite LibListExec.length_eq in *. set (n := length ks) in *.
math_rewrite (abs (n + 1) = S n). rew_listx. simpl.
xapp. xval. xsimpl*. unfold hrecord. autorewrite with rew_list_exec.
asserts R: (maps_all_fields n (LibList.map (fun k ⇒ (k, val_uninit)) ks)).
{ unfolds. rewrite Hks. clears ks p. generalize 0%nat as o.
induction n as [|n']; intros; simpl; rew_listx; fequals*. }
xsimpl* n. xchange* <- (@hfields_eq_hrange n). { rew_listx*. }
{ unfold n. clears n p. induction ks as [|ks']; rew_listx; fequals*. }
Qed.
#[global] Hint Resolve triple_alloc_hrecord : triple.
The interest of using the computable counterparts of the function length
and map is that a call to simpl will yield exactly the expected result,
with lists indexed using field names. For example, the allocation of a list
cell is specified as follows.
Lemma triple_alloc_mcons :
triple (val_alloc_hrecord (head::tail::nil) ())
\[]
(funloc p ⇒ p ~~~> `{ head := val_uninit ; tail := val_uninit }).
Proof using.
dup.
{ (* Detailed proof: *)
applys triple_alloc_hrecord. simpl. rew_listx. reflexivity. }
{ (* Short proof: *)
applys* triple_alloc_hrecord. }
Qed.
triple (val_alloc_hrecord (head::tail::nil) ())
\[]
(funloc p ⇒ p ~~~> `{ head := val_uninit ; tail := val_uninit }).
Proof using.
dup.
{ (* Detailed proof: *)
applys triple_alloc_hrecord. simpl. rew_listx. reflexivity. }
{ (* Short proof: *)
applys* triple_alloc_hrecord. }
Qed.
Implementation of Record Allocation with Initialization
Definition val_new_hrecord_2 (k1:field) (k2:field) : val :=
<{ fun 'x1 'x2 ⇒
let 'p = {val_alloc_hrecord (k1::k2::nil)} () in
'p`.k1 := 'x1;
'p`.k2 := 'x2;
'p }>.
<{ fun 'x1 'x2 ⇒
let 'p = {val_alloc_hrecord (k1::k2::nil)} () in
'p`.k1 := 'x1;
'p`.k2 := 'x2;
'p }>.
To improve readability, we introduce notation to allow writing, e.g.,
`{ head := x; tail := q } for the allocation and initialization of a list
cell.
Notation "`{ k1 := v1 ; k2 := v2 }" :=
(val_new_hrecord_2 k1 k2 v1 v2)
(in custom trm at level 65,
k1, k2 at level 0,
v1, v2 at level 65) : trm_scope_ext.
(val_new_hrecord_2 k1 k2 v1 v2)
(in custom trm at level 65,
k1, k2 at level 0,
v1, v2 at level 65) : trm_scope_ext.
This operation is specified as follows.
Lemma triple_new_hrecord_2 : ∀ k1 k2 v1 v2,
k1 = 0%nat →
k2 = 1%nat →
triple <{ `{ k1 := v1; k2 := v2 } }>
\[]
(funloc p ⇒ p ~~~> `{ k1 := v1 ; k2 := v2 }).
Proof using.
introv → →. xwp. xapp triple_alloc_hrecord. { reflexivity. }
intros p. simpl.
xapp triple_set_field_hrecord. { reflexivity. }
xapp triple_set_field_hrecord. { reflexivity. }
xval. xsimpl*.
Qed.
End Realization.
k1 = 0%nat →
k2 = 1%nat →
triple <{ `{ k1 := v1; k2 := v2 } }>
\[]
(funloc p ⇒ p ~~~> `{ k1 := v1 ; k2 := v2 }).
Proof using.
introv → →. xwp. xapp triple_alloc_hrecord. { reflexivity. }
intros p. simpl.
xapp triple_set_field_hrecord. { reflexivity. }
xapp triple_set_field_hrecord. { reflexivity. }
xval. xsimpl*.
Qed.
End Realization.
This completes the verification of the implementation of record operations
in terms of block allocation and pointer arithmetic. The generalization of
val_new_hrecord_2 to handle arbitrary arities involves more technical
meta-programming, beyond the scope of this course.
Extending xapp to Support Record Access Operations
Lemma xapp_get_field_lemma : ∀ H k p Q,
H ==> \∃ kvs, (hrecord kvs p) \*
match hfields_lookup k kvs with
| None ⇒ \[False]
| Some v ⇒ ((fun r ⇒ \[r = v] \* hrecord kvs p) \−−∗ protect Q) end →
H ==> wpgen_app (val_get_field k p) Q.
Proof using.
introv N. xchange N. intros kvs. cases (hfields_lookup k kvs).
{ unfold wpgen_app. xsimpl.
applys* triple_conseq_frame triple_get_field_hrecord.
{ xsimpl. }
{ xpull. intros r →. xchange (qwand_specialize v).
rewrite* hwand_hpure_l. } }
{ xpull. }
Qed.
H ==> \∃ kvs, (hrecord kvs p) \*
match hfields_lookup k kvs with
| None ⇒ \[False]
| Some v ⇒ ((fun r ⇒ \[r = v] \* hrecord kvs p) \−−∗ protect Q) end →
H ==> wpgen_app (val_get_field k p) Q.
Proof using.
introv N. xchange N. intros kvs. cases (hfields_lookup k kvs).
{ unfold wpgen_app. xsimpl.
applys* triple_conseq_frame triple_get_field_hrecord.
{ xsimpl. }
{ xpull. intros r →. xchange (qwand_specialize v).
rewrite* hwand_hpure_l. } }
{ xpull. }
Qed.
Likewise, the lemma xapp_set_field_lemma reformulates the specification
triple_set_field_hrecord. The assumption
hfields_update k v kvs = Some ks' is also captured by a pattern matching.
Lemma xapp_set_field_lemma : ∀ H k p v Q,
H ==> \∃ kvs, (hrecord kvs p) \*
match hfields_update k v kvs with
| None ⇒ \[False]
| Some kvs' ⇒ ((fun _ ⇒ hrecord kvs' p) \−−∗ protect Q) end →
H ==> wpgen_app (val_set_field k p v) Q.
Proof using.
introv N. xchange N. intros kvs. cases (hfields_update k v kvs).
{ unfold wpgen_app. xsimpl.
applys* triple_conseq_frame triple_set_field_hrecord.
{ xsimpl. }
{ xpull. intros r. xchange (qwand_specialize r). } }
{ xpull. }
Qed.
H ==> \∃ kvs, (hrecord kvs p) \*
match hfields_update k v kvs with
| None ⇒ \[False]
| Some kvs' ⇒ ((fun _ ⇒ hrecord kvs' p) \−−∗ protect Q) end →
H ==> wpgen_app (val_set_field k p v) Q.
Proof using.
introv N. xchange N. intros kvs. cases (hfields_update k v kvs).
{ unfold wpgen_app. xsimpl.
applys* triple_conseq_frame triple_set_field_hrecord.
{ xsimpl. }
{ xpull. intros r. xchange (qwand_specialize r). } }
{ xpull. }
Qed.
The hook xapp_nosubst_for_records, invoked by xapp, is then implemented
by exploiting the two lemmas above, in conjunction with xsimpl.
Ltac xapp_nosubst_for_records tt ::=
first [ applys xapp_set_field_lemma; xsimpl; simpl; xapp_simpl
| applys xapp_get_field_lemma; xsimpl; simpl; xapp_simpl ].
first [ applys xapp_set_field_lemma; xsimpl; simpl; xapp_simpl
| applys xapp_get_field_lemma; xsimpl; simpl; xapp_simpl ].
The above definition is the one used in LibSepReference. It was put to
practice in the chapters Basic and Repr.
(* 2024-11-04 20:38 *)