ArraysReasoning about Arrays

Set Implicit Arguments.
From SLF Require Import LibSepReference LibSepTLCbuffer.
#[global] Hint Rewrite conseq_cons' : rew_listx.
Open Scope wp_scope.

Implicit Types P : Prop.
Implicit Types H : hprop.
Implicit Types Q : valhprop.
Implicit Type p q : loc.
Implicit Type k : nat.
Implicit Type i n : int.
Implicit Type v : val.
Implicit Types z : nat.

First Pass

This chapter explains how to specify operations on ML-style arrays in Separation Logic. In ML-like languages, an array of size n is an allocated block of size n+1 with a header field that stores the length of the array. To perform a get or a set operation on an array, the programmer provides the pointer to the array object -- that is, the address of the header cell as well as the index on which to operate.
The chapter starts with a presentation of large-footprint operations for arrays, expressed with respect to a representation predicate of the form harray L p. Then it presents small-footprint specifications for the same operations, involving a representation predicate of the form hcell v p i for representing each cell, as well as a predicate, written hheader p n for representing the header field. Interestingly, the header cell predicate alone suffices for reading the length of an array.
We will illustrate the benefits of small-footprint specifications for reasoning about the recursive function quicksort, which operates on array segments. Segments are described using the heap predicate harray_seg L p i . Array segments allow "framing" the parts of arrays that are not involved in a recursive call.
The "More Details" part of the chapter explains how to define the predicates hheader, hcell, hseg, and harray with respect to the representation of heaps as a finite map from locations to values. The "optional material" part of the chapter shows how to implement and verify make, length, get, and set in terms of block allocation and pointer arithmetic.

Large-Footprint Specifications for Array Operations

The heap predicate harray L p asserts that an array is allocated at address p and that its elements are described by the list L. At this stage, let us axiomatize this predicate.
Parameter harray : (L:list val) (p:loc), hprop.
The primitive operation val_array_make n v allocates a fresh array of length n, with each of its cells containing the value v.
Parameter val_array_make : val.
The specification of val_array_make requires the length n to be nonnegative. The output array is described as a list made of n copies of the value v. This list is built by the utility function LibList.make (abs n) v, where abs converts the integer n into a natural number.
Parameter triple_array_make : n v,
  n 0
  triple (val_array_make n v)
    \[]
    (funloc p harray (LibList.make (abs n) v) p).
Alternatively, the array produced by make n v can be described extensionally, as a list L of length n such that all its elements are equal to v.
Parameter triple_array_make' : n v,
  n 0
  triple (val_array_make n v)
    \[]
    (funloc p \ L, harray L p
                 \* \[n = length L]
                 \* \[ i, 0 i < n LibList.nth (abs i) L = v]).
We'll come back shortly afterwards on the benefits of using the first presentation, expressed using LibList.make.
The operation val_array_length p returns the length of the array allocated at location p.
Parameter val_array_length : val.
The specification for val_array_length expects a heap predicate of the form harray L p and asserts that the return value is the length of the logical list L. The postcondition repeats harray L p to capture the fact that the array is not modified during the operation.
Parameter triple_array_length : L p,
  triple (val_array_length p)
    (harray L p)
    (fun r\[r = length L] \* harray L p).
The operation val_array_get p i returns the contents of the i-th cell of the array at location p.
Parameter val_array_get : val.
The specification of val_array_get is as follows. The precondition describes the array in the form harray L p, with a premise that requires the index i to be in the valid range, that is, between zero (inclusive) and the length of L (exclusive). The postcondition asserts that the result value is the i-th element of the list L, written nth (abs i) L. The postcondition again repeats harray L p because the array is unchanged.
Parameter triple_array_get : L p i,
  0 i < length L
  triple (val_array_get p i)
    (harray L p)
    (fun r\[r = LibList.nth (abs i) L] \* harray L p).
The operation val_array_set p i v updates the contents of the i-th cell of the array at location p.
Parameter val_array_set : val.
The specification of val_array_set admits the same precondition as val_array_get, with harray L p and the constraint 0 i < length L. Its postcondition describes the updated array using a predicate of the form harray L' p, where L' corresponds to the update of the i-th item of the list L with the value v, written update (abs i) v L.
Parameter triple_array_set : L p i v,
  0 i < length L
  triple (val_array_set p i v)
    (harray L p)
    (fun _harray (LibList.update (abs i) v L) p).

#[global] Hint Resolve triple_array_get triple_array_set
                       triple_array_make triple_array_length : triple.
Above, we saw two ways of stating the postcondition of the array_make operation: either describing the result using a corresponding logical operation, like in triple_array_make; or describing the result extensionally by specifying the value of each cell, as in triple_array_make'. A question of this kind appears not only here for array_make, but for numerous other operations involving arrays. There is no definite rule, but the following considerations motivate our preference for the first style.
A first aspect to take into account is that expressing the postcondition in terms of a logical operation like in triple_array_make leads to a more concise specification.
A second aspect to consider is how to reason about a sequence of operations involving arrays. For example, consider the following program fragment.
    let t = Array.make n v in
    t.(i) <- w;
    t.(j)
When using logical operations, the resulting array may be described as nth (abs j) (update (abs i) w (make n v)). If i j, this expression can be simplified by rewriting into v. In other words, all the reasoning is carried out by in-place rewriting without involving any hypothesis.
When using extensional characterization, the operation Array.make n v is described as an array L such that nth (abs k) L = v holds for any valid index k. In that same style, the operation Array.set t i w would be described as returning an array L' such that nth (abs i) L' = w and nth (abs k) L' = nth (abs k) L for any valid index k such that k i. Then, the final value is described as nth (abs j) L'. To prove this value equal to v under the assumption i j, we would need to perform two rewriting steps using each of the two hypotheses: nth (abs j) L' is equal to nth (abs j) L, hence equal to v.
In summary, both approach work. But when a logical function corresponding to the program function can be used, hypotheses are more concise and tend to be better suited for automated simplification by rewriting. Of course, there might be overheads to defining this logical function, but if it already exists in the library of our theorem prover, then the overhead is null.

Small-Footprint Specifications for Array Operations

The large-footprint specifications presented above are sufficently expressive for verifying sequential programs manipulating arrays, but they are too limited for verifying a parallel program that concurrently updates two independent segments of an array. Indeed, even the verification of certain sequential programs can benefit from the use of smaller-footprint specifications, which require the ownership not of the whole array but only of a specific subset of the array cells.
For example, the divide-and-conquer quicksort function sorts the elements in a given range of cells. Even though quicksort is not a concurrent function, using a small-footprint specification avoids the need to explicitly state the fact that cells of the array outside of the segment targeted by a recursive call remain unmodified.
In what follows, we present small-footprint specifications for operating on individual cells and for operating on array segments, then present the proof of quicksort.
Small-footprint specifications are expressed using heap predicates for individual array and header cells.
The heap predicate hcell v p i asserts that the cell at index i in the array p stores the value v.
Internally, as explained below, hcell v p i can be defined as (p+1+i) ~~> v, with the +1 corresponding to the header cell.
Parameter hcell : (v:val) (p:loc) (i:int), hprop.
The heap predicate hheader n p asserts that the header cell of the array at address p stores the length n. Internally, hheader n p can be defined as p ~~> n.
Parameter hheader : (n:int) (p:loc), hprop.
To read the length of an array, it is sufficient to provide the heap predicate associated with the header field of that array. In other words, there is no need to have the ownership of any cell of an array for reading its length.
Parameter triple_array_length_hheader : n p,
  triple (val_array_length p)
    (hheader n p)
    (fun r\[r = (n:int)] \* hheader n p).
To read or write in a given array cell, it is sufficient to provide the hcell predicate associated with that cell. There is no need to own the header cell or other cells of the array.
Parameter triple_array_get_hcell : p i v,
  triple (val_array_get p i)
    (hcell v p i)
    (fun r\[r = v] \* hcell v p i).

Parameter triple_array_set_hcell : p i v w,
  triple (val_array_set p i v)
    (hcell w p i)
    (fun _hcell v p i).
Note: technically, an ML runtime performs bound checks on get and set operations, to ensure that the indices provided fall within the array. These bound-checks operations do involve a read to the header field. Thus, it may appear that the header cell ought to be involved in the specification of get and set. However, providing the hheader predicate is not actually required for verifying the correctness a program. If one wanted to formally verify a runtime system, on the other hand, one would argue instead that headers are read-only cells, and that the access permissions over such cells can be "divided" among the client code and the runtime system. The realization of this "division" mechanism is based on the use of "fractional permissions", a Separation Logic concept that is just beyond the scope of the present course.

Heap Predicate for Array Segments

So far, we have presented small-footprint specifications expressed in terms of hheader and hcell. But the creation of an array via val_array_make n v produces a heap predicate of the form harray L p. Thus, it remains to explain how to convert an harray predicate into the separating conjunction of an hheader predicate and a set of hcell predicates.
The auxiliary predicate hseg L p j describes an "array segment": it describes the iterated separating conjunction of the predicate hcell over a set of consecutive cells starting at index j, with elements described by the list L. For example, hseg (x0::x1::x2::nil) p j corresponds to hcell x0 p (j+0) \* hcell x1 p (j+1) \* hcell x2 p (j+2). Internally, this corresponds to the cells at address p+1+j, p+2+j, and p+3+j, skipping the header cell located at address p+j.
Fixpoint hseg (L:list val) (p:loc) (j:int) : hprop :=
  match L with
  | nil\[]
  | x::L'(hcell x p j) \* (hseg L' p (j+1))
  end.
If the list L is empty, then hseg nil p j is equivalent to the empty heap predicate. In particular, it does not assert that j is a valid index in the array. (The proofs of this lemma and the following one appear further in the file.)
Parameter hseg_nil : p j,
  hseg nil p j = \[].
If the list L is a singleton, then hseg (v::nil) p j is equivalent to hcell v p j.
Parameter hseg_one : v p j,
  hseg (v::nil) p j = hcell v p j.
A key result captures how a range of consecutive cells may be split in two parts. Concretely, a heap predicate describing a segment with elements (L1++L2) can be split into a predicate describing a first segment with elements L1 and another predicate describing a second segment with elements L2. The two parts can be merged back into the original form at any time, as captured by the equality symbol in the statement below.
Parameter hseg_app : p j L1 L2,
    hseg (L1 ++ L2) p j
  = hseg L1 p j \* hseg L2 p (j + length L1).
For verifying programs, two corollaries are convenient. The lemma hseg_cons isolates the first cell of a segment, whereas the lemma hseg_last isolates the last cell of a segment.
Lemma hseg_cons : v p j L,
  hseg (v::L) p j = hcell v p j \* hseg L p (j+1).
Proof using. auto. Qed.

Lemma hseg_last : v p j L,
  hseg (L&v) p j = hseg L p j \* hcell v p (j+length L).
Proof using. intros. rewrite hseg_app. rewrite hseg_cons, hseg_nil. xsimpl. Qed.
These two corollaries themselves admit additional reformulations that help merge back the isolated head and tail cells.
Their statements do not constraint the offsets to be syntactically of the form j + 1 or j + length L1, but instead introduce arithmetic equalities that the tactic math can generally handle.
Lemma hseg_cons_r : L v p j1 j2,
  j2 = j1 + 1
  hcell v p j1 \* hseg L p j2 ==> hseg (v::L) p j1.
Proof using. intros. subst. rewrite* hseg_cons. Qed.

Lemma hseg_app_r : p L1 L2 j1 j2,
  j2 = j1 + length L1
  hseg L1 p j1 \* hseg L2 p j2 ==> hseg (L1 ++ L2) p j1.
Proof using. intros. subst. rewrite* hseg_app. Qed.

Lemma hseg_last_r : v p j L j',
  j' = (j+length L)
  hseg L p j \* hcell v p j' ==> hseg (L&v) p j.
Proof using. intros. subst. rewrite* hseg_last. Qed.

Derived Segment-Based Specifications for Array Operations

For reasoning about programs that operate over array segments, such as quicksort, it is convenient to specify the functions make, length, get and set exclusively in terms of hheader and hseg. The lemma triple_array_length_header, already stated earlier, specifies length in terms of hheader. For the other operations, we consider the following derived specifications.
 Parameter triple_array_make_hseg : n v,
  n 0
  triple (val_array_make n v)
    \[]
    (funloc p hheader (abs n) p \* hseg (LibList.make (abs n) v) p 0).

Parameter triple_array_get_hseg : L p i j,
  0 i - j < length L
  triple (val_array_get p i)
    (hseg L p j)
    (fun r\[r = LibList.nth (abs (i-j)) L] \* hseg L p j).

Parameter triple_array_set_hseg : L p i j v,
  0 i - j < length L
  triple (val_array_set p i v)
    (hseg L p j)
    (fun _hseg (LibList.update (abs (i-j)) v L) p j).

Verification of the Safety of QuickSort

Let us illustrate the benefits of these segment-based specifications by reasoning about the divide-and-conquer quicksort function. For simplicity, let us consider an array that stores integer values. The implementation of quicksort is standard, using an auxiliary pivot function. The operation pivot p i n processes the segment of array p that starts at index i and is made of n elements. It first chooses an arbitrary element from that segment as pivot. It then reorders the elements from the segment, separating the values less than or equal to the pivot value from the values greater than the pivot value. It returns the index at which the pivot value ends up being stored in the segment.   let pivot p i n = ...
    (* pivot modifies an array p, and returns the index j of a pivot
       value x, with j in the range i j < i+n, such that elements
       in the range i .. j-1 are smaller than or equal to x, and elements
       in the range j+1 .. i+n-1 are greater than x. *)


  (* quicksort sorts an array p on the range of indices i .. i+n-1. *)
  let rec quicksort p i n =
    if n > 1 then begin
      let j = pivot p i n in
      let n1 = j - i in
      quicksort p i n1;
      quicksort p (j+1) (n-n1-1)
    end
As a warm-up before establishing the full functional correctness of quicksort, we begin by establishing its safety and termination. The core of this argument is proving that every array access is valid, through the use of array-segment specifications. The safety proof captures the essence of the ownership reasoning at play, including the framing process over recursive calls. In the "More Details" section, we generalize the proof to show that quicksort also correctly sorts its input array.
First, pivot.
Its safety specification asserts that pivot p i n operates on a range of size n, starting at index i of the array p. This range is described in the precondition by a list L, and in the postcondition by a list L'. This list L' decomposes as L1 ++ x :: L2, where x denotes the pivot value.
In the full correctness proof, we will further assert that L1 contains only values smaller than x and L2 only values at least as large as x, but for establishing safety these assertions are not needed.
Parameter val_pivot : val.

Parameter triple_pivot_safety : p i n L,
  n = length L
  n 1
  triple (val_pivot p i n)
    (hseg L p i)
    (fun r\ (j:int), \[r = val_int j] \*
              \ (x:int) (L' L1 L2:list val), hseg L' p i \* \[
                  length L' = length L
                L' = L1 ++ val_int x :: L2
                j - i = length L1 ]).
Now, the recursive function quicksort p i n sorts an segment of length n, starting at index i, in the array p.
Definition val_quicksort : val :=
  <{ fix 'f 'p 'i 'n
       let 'b = 'n > 1 in
       if 'b then
         let 'j = val_pivot 'p 'i 'n in
         let 'n1 = 'j - 'i in
         'f 'p 'i 'n1;
         let 'i2 = 'j + 1 in
         let 'n3 = 'n - 'n1 in
         let 'n2 = 'n3 - 1 in
         'f 'p 'i2 'n2
       end }>.

Exercise: 4 stars, standard, especially useful (triple_quicksort_safety)

Prove that quicksort operates on the targeted array segment without interfering with the other cells of the array. This property is captured by the specification shown below. Hint: use xapp triple_pivot_safety to reason about the call to pivot.
Lemma triple_quicksort_safety : p i n L,
  n = length L
  i 0
  triple (val_quicksort p i n)
    (hseg L p i)
    (fun _\ L', \[length L' = length L] \* hseg L' p i).
Proof using.
  introv Hn Hi. gen i L. induction_wf IH: (downto 0) n. intros.
 (* FILL IN HERE *) Admitted.

More Details

Formalization of Sorted Lists

Section SortedLists.
To refine the above safety proof into a functional correctness proof, we first need to formalize the notations of permutation and sortedness.
The predicate permut L L' asserts that L' is a permutation of L.
Inductive permut (A:Type) : list A list A Prop :=
  | permut_mid : L1 L2 L3 L4,
      permut (L1 ++ L2 ++ L3 ++ L4) (L1 ++ L3 ++ L2 ++ L4)
  | permut_trans : L3 L1 L2,
      permut L1 L2
      permut L2 L3
      permut L1 L3.
The predicate permut is reflexive and symmetric.
Lemma permut_refl : A (L:list A),
  permut L L.
Proof using. intros. applys permut_mid (@nil A) (@nil A) (@nil A) L. Qed.

Lemma permut_sym : A (L1 L2: list A),
  permut L1 L2
  permut L2 L1.
Proof using.
  introv M. induction M.
  { applys* permut_mid. }
  { applys* permut_trans IHM2. }
Qed.

#[local] Hint Resolve permut_refl.
If L' is a permutation of L, then it has the same length as L.
Lemma permut_length : A (L L':list A),
  permut L L'
  length L = length L'.
Proof using. introv M. induction M; rew_list in *; try math. Qed.
If L1' is a permutation of L1 and L2' is a permutation of L2, then L1' ++ L2' is a permutation of L1 ++ L2.
Lemma permut_app : A (L1 L2 L1' L2':list A),
  permut L1 L1'
  permut L2 L2'
  permut (L1 ++ L2) (L1' ++ L2').
Proof using.
  introv M1 M2. applys permut_trans (L1' ++ L2).
  { clear M2. induction M1.
    { rew_list. applys permut_mid. }
    { applys* permut_trans IHM1_2. } }
  { clear M1. induction M2.
    { repeat rewrite <- (app_assoc L1'). applys permut_mid. }
    { applys* permut_trans IHM2_2. } }
Qed.
Useful corollaries for cons and last:
Lemma permut_cons : A (x:A) L1 L1',
  permut L1 L1'
  permut (x :: L1) (x :: L1').
Proof using. intros. applys* permut_app (x::nil) L1 (x::nil) L1'. Qed.

Lemma permut_last : A (x:A) L1 L1',
  permut L1 L1'
  permut (L1 & x) (L1' & x).
Proof using. intros. applys* permut_app L1 (x::nil) L1' (x::nil). Qed.
Swapping of consecutive elements or moving the first element to the last position yield valid permutations.
Lemma permut_swap_first_two : A (x y : A) (L:list A),
  permut (x :: y :: L) (y :: x :: L).
Proof using.
  intros. applys permut_mid (@nil A) (x::nil) (y::nil) L.
Qed.

Lemma permut_swap_first_last : A (x : A) (L:list A),
  permut (x::L) (L&x).
Proof using.
  intros. applys_eq (>> permut_mid (@nil A) (x::nil) L (@nil A)). rew_list*.
Qed.
If a property P holds for all elements of a list L, it also holds for all the elements of any permutation of L.
Lemma permut_Forall : A (P:AProp) L L',
  Forall P L
  permut L L'
  Forall P L'.
Proof using.
  introv N M. gen N. induction M; intros; auto.
  { repeat rewrite Forall_app_eq in *. autos*. }
Qed.
The predicate sorted L asserts that L is a sorted list of integers.
Inductive sorted : list int Prop :=
  | sorted_nil :
     sorted nil
  | sorted_one : x,
     sorted (x :: nil)
  | sorted_cons : x y L,
     x y
     sorted (y :: L)
     sorted (x :: y :: L).
The proposition list_of_gt x L asserts that all elements in L are greater than x. Symmetrically, the proposition list_of_le x L asserts that all elements in L is no greater than x.
Definition list_of_gt (x:int) (L:list int) : Prop :=
  Forall (fun yy > x) L.

Definition list_of_le (x:int) (L:list int) : Prop :=
  Forall (fun yy x) L.
Two key lemmas for verifying sorting algorithms are stated below.
First, if L is sorted, then adding an element x no greater than elements in L to the front of L yields a sorted list.
Lemma sorted_cons_gt : x L,
  list_of_gt x L
  sorted L
  sorted (x :: L).
Proof using.
  introv N M. destruct L as [|].
  { applys sorted_one. }
  { lets (Hv&_): Forall_cons_inv N. applys* sorted_cons. math. }
Qed.
Second, if L1 is a sorted list, x is no less than the elements in L1, and x::L2 is a sorted list, then L1 ++ x :: L2 is sorted.
Lemma sorted_app_le : x L1 L2,
  list_of_le x L1
  sorted L1
  sorted (x :: L2)
  sorted (L1 ++ x :: L2).
Proof using.
  introv N M1 M2. induction M1; rew_list in *. { auto. }
  { lets (Hv&_): Forall_cons_inv N. applys* sorted_cons. }
  { lets (_&N'): Forall_cons_inv N. applys* sorted_cons. }
Qed.

End SortedLists.

Formalization of Arrays of Integer Values

To specify quicksort and other functions manipulating lists of integers, it is useful to introduce a conversion function vals_int, which converts a list of integers (type list int) into a list of values (type list val).
In particular, hseg (vals_int L) p i describes an array segment containing integer values.
Definition vals_int (L:list int) : list val :=
  LibList.map val_int L.
To ease the reasoning about vals_int, we add the rewriting rules, stated below, to the tactics rew_list and rew_listx. These tactics perform normalization by means of Coq's autorewrite tactic. In an ideal world, we would use a single tactic rew_list to handle all rewriting rules related to lists. Unfortunately, autorewrite is undesirably slow when handling a large the data base of rewriting rules. The TLC library therefore relies on a 2-layer design: the tactic rew_list covers only the most frequently used rewriting rules, whereas the tactic rew_listx is slower but covers all rewriting rules.
Lemma vals_int_nil :
  vals_int nil = nil.
Proof using. intros. unfold vals_int. rew_listx*. Qed.

Lemma vals_int_cons : x L,
  vals_int (x :: L) = val_int x :: vals_int L.
Proof using. intros. unfold vals_int. rew_listx*. Qed.

Lemma vals_int_app : L1 L2,
  vals_int (L1 ++ L2) = vals_int L1 ++ vals_int L2.
Proof using. intros. unfold vals_int. rew_listx*. Qed.

Lemma vals_int_last : x L,
  vals_int (L & x) = vals_int L & val_int x.
Proof using. intros. unfold vals_int. rew_listx*. Qed.

Lemma length_vals_int : L,
  length (vals_int L) = length L.
Proof using. intros. unfold vals_int. rew_listx*. Qed.

#[export] Hint Rewrite vals_int_nil vals_int_cons vals_int_app
    vals_int_last length_vals_int : rew_list.
#[export] Hint Rewrite vals_int_nil vals_int_cons vals_int_app
    vals_int_last length_vals_int : rew_listx.

Functional Correctness of Quicksort

In order to verify quicksort, we need to refine the specification of the pivot function to include functional correctness properties.
The postcondition of the pivot operation describes the elements in the segment as the list L'. This list decomposes as L1 ++ x :: L2, where x corresponds to the pivot. This time, the assertions list_of_le x L1 and list_of_gt x L2 are included.
Parameter triple_pivot : n p i L,
  n = length L
  n 1
  triple (val_pivot p i n)
    (hseg (vals_int L) p i)
    (fun r\ j, \[r = val_int j] \*
              \ x L' L1 L2, hseg (vals_int L') p i \* \[
                  permut L L'
                L' = L1 ++ x :: L2
                j - i = length L1
                list_of_le x L1
                list_of_gt x L2 ]).

Exercise: 5 stars, standard, optional (triple_quicksort)

Prove that quicksort sorts the array segment targeted by its arguments. Hint: use xapp triple_pivot.
Lemma triple_quicksort : p i n L,
  n = length L
  i 0
  triple (val_quicksort p i n)
    (hseg (vals_int L) p i)
    (fun _\ L', \[permut L L' sorted L']
                          \* hseg (vals_int L') p i).
Proof using. (* FILL IN HERE *) Admitted.
The function quicksort_full p sorts all the elements stored in the array at address p.
Definition val_quicksort_full : val :=
  <{ fun 'p
       let 'n = val_array_length 'p in
       val_quicksort 'p 0 'n }>.
The predicate harray L p is defined as the conjunction of hheader (length L) p, which captures the fact that the header stores the length of the list L, and of hseg L p 0, which describes "full" array segment, ranging from the first to the last cell of the array.
Parameter harray_eq : p L,
  harray L p = \ n, \[n = length L] \* hheader n p \* hseg L p 0.

Exercise: 2 stars, standard, optional (triple_quicksort_full)

Prove that val_quicksort_full sorts an array. Hint: use xchange and xchange <- on harray_eq to convert between harray and hseg.
Lemma triple_quicksort_full : p L,
  triple (val_quicksort_full p)
    (harray (vals_int L) p)
    (fun _\ L', \[permut L L' sorted L']
              \* harray (vals_int L') p).
Proof using. (* FILL IN HERE *) Admitted.
End QuickSort.

Realization of hheader and hcell

Module Realization.
So far, the predicates hheader and hcell were axiomatized. Let us show how they can be realized with respect to the concrete representation of the memory state, of type heap. The predicates hseg and harray can then be defined on top of hheader and hcell.
Following the standard memory layout of allocated blocks in ML programs, we represent ML-style array of size n as a memory block of size n+1. The first cell, called the "header cell", stores the length of the array. The remaining cells store the elements from the array.
The heap predicate hheader n p describes a cell at location p with contents n. Recall that the definition of hheader is opaque when reasoning about array-using programs, so there is no risk that the programmer attempts to reason about code that modifies header fields.
Definition hheader (n:int) (p:loc) : hprop :=
  p ~~> (val_int n).
Because Coq's fold operation rarely applys as the user expects, we state a lemma that reformulates the definition of hheader as an equality. Performing a rewrite using this lemma corresponds either to an unfold or to a fold operation, depending on the direction. More generally, reformulating a definition as an equality is strongly recommended for every representation predicate.
Lemma hheader_eq : p n,
  (hheader n p) = (p ~~> (val_int n)).
Proof using. auto. Qed.
The predicate hcell v p i asserts that the cell at index i from the array at address p stores the value p. We defined this predicate informally by asserting that the cell in memory at address p+1+i stores the value v. Thus, as first approximation, the predicate hcell v p i could be defined as (p + 1 + abs i) ~~> v. The actual definition also embeds the assertion i 0 to guarantee that i refers to a valid index and p + 1 + abs i computes the expected offset.
Definition hcell (v:val) (p:loc) (i:int) : hprop :=
  ((p + 1 + abs i)%nat ~~> v) \* \[i 0].
The following lemma is useful for folding or unfolding the definition.
Lemma hcell_eq : v p i,
  (hcell v p i) = ((p + 1 + abs i)%nat ~~> v) \* \[i 0].
Proof using. auto. Qed.
This one extracts the property i 0 from hcell v p i .
Lemma hcell_nonneg : v p i,
  hcell v p i ==> hcell v p i \* \[i 0].
Proof using. unfold hcell. xsimpl*. Qed.

Realization of hseg and harray

The heap predicate hseg for array segments can be defined in terms of hcell as suggested earlier.
Fixpoint hseg (L:list val) (p:loc) (j:int) : hprop :=
  match L with
  | nil\[]
  | x::L'(hcell x p j) \* (hseg L' p (j+1))
  end.
The predicate for full arrays, harray, can be defined as the pair of an hheader predicate describing the header cell and a hseg covering the full contents of the array.
Definition harray (L:list val) (p:loc) : hprop :=
  hheader (length L) p \* hseg L p 0.
The lemma harray_eq can be used for folding or unfolding harray.
Lemma harray_eq : p L,
  harray L p = \ n, \[n = length L] \* hheader n p \* hseg L p 0.
Proof using. unfold harray. xsimpl*. { intros; subst*. } Qed.
When proving properties about hseg L p j, one frequently faces a mismatch between hseg L p j1 and hseg L p j2, where j1 and j2 are provably equal yet do not unify. To avoid cluttering proofs, the following lemma and associated hint are very useful.
Lemma hseg_start_eq : L p j1 j2,
  j1 = j2
  hseg L p j1 ==> hseg L p j2.
Proof using. intros. subst*. Qed.

#[local] Hint Extern 1 (hseg ?L ?p ?j1 ==> hseg ?L ?p ?j2) ⇒
  apply hseg_start_eq; math.
We now prove the lemmas hseg_nil and hseg_one and hseg_cons, which we presented and used earlier in the chapter.
Lemma hseg_nil : p j,
  hseg nil p j = \[].
Proof using. auto. Qed.

Lemma hseg_one : v p j,
  hseg (v::nil) p j = hcell v p j.
Proof using. intros. simpl. xsimpl*. Qed.

Lemma hseg_cons : v p j L,
  hseg (v::L) p j = hcell v p j \* hseg L p (j+1).
Proof using. intros. simpl. xsimpl*. Qed.

Exercise: 3 stars, standard, especially useful (hseg_app)

Prove the splitting lemma for array segments. Hint: rew_list is helpful for simplifying list operations. Recall that xsimpl helps proving equalities on hprop.
Lemma hseg_app : L1 L2 p j,
    hseg (L1 ++ L2) p j
  = hseg L1 p j \* hseg L2 p (j + length L1).
Proof using. (* FILL IN HERE *) Admitted.

Focus Lemmas for Array Segments

With a predicate harray L p at hand, it may be useful to isolate the cell at an index i, that is, to extract the predicate hcell v p i, where 0 i < length L and v = LibList.nth (abs i) L. By "giving back" the predicate hcell v p i, we can get back to the original predicate harray L p.
Parameter harray_focus_read' : i L p,
  0 i < length L
      harray L p
  ==> let v := LibList.nth (abs i) L in
      (hcell v p i) \* (hcell v p i \−∗ harray L p).
The lemma above, called a "focus" lemma or "borrowing" lemma in Rust's terminology, only supports reading into the "focused" cell at index i; it does not allow modifying the contents of the cell. Indeed, if hcell v p i is updated to hcell w p i, then the magic wand hcell v p i \−∗ harray L p can no longer be exploited.
Fortunately, it is straightforward to generalize the focus lemma into a form that supports updates. The general focus lemma shown below makes use of a universal quantification over the value w that the cell i may contain after potential update operations.
Parameter harray_focus' : i L p,
  0 i < length L
      harray L p
  ==> let v := LibList.nth (abs i) L in
         (hcell v p i)
      \* (\ w, hcell w p i \−∗ harray (LibList.update (abs i) w L) p).
The focus lemmas are critically useful. Without them, we would need to repeat a number of tedious splitting and merging steps.

Exercise: 4 stars, standard, especially useful (hseg_focus)

Prove the following focus lemma for array segments. Hint: although a proof by induction is possible, a simpler proof can be achieved by exploiting LibList.list_middle_inv, LibList.nth_middle and LibList.update_middle. Also, recall that lemma Inhab_val proves Inhab val.
Lemma hseg_focus_relative : (k:nat) L p j,
  0 k < length L
      hseg L p j
  ==> let v := LibList.nth k L in
         hcell v p (j+k)
      \* (\ w, hcell w p (j+k) \−∗ hseg (LibList.update k w L) p j).
Proof using. (* FILL IN HERE *) Admitted.
Arguments hseg_focus_relative : clear implicits.
In the statement above, k is an index relative to the start of the segment. The focus lemma can also be expressed in terms of absolute indices. Below, i denotes a valid array index within the targeted segment.
Lemma hseg_focus : i L p j,
  0 i-j < length L
      hseg L p j
  ==> let v := LibList.nth (abs (i-j)) L in
         hcell v p i
      \* (\ w, hcell w p i \−∗ hseg (LibList.update (abs (i-j)) w L) p j).
Proof using.
  introv Hk. xchange (hseg_focus_relative (abs (i-j))). { math. }
  math_rewrite (j + abs (i - j) = i). xsimpl.
Qed.

Arguments hseg_focus : clear implicits.
We can derive the final focus lemma for harray from the one for hseg.
Lemma harray_focus : i L p,
  0 i < length L
      harray L p
  ==> let v := LibList.nth (abs i) L in
         hcell v p i
      \* (\ w, hcell w p i \−∗ harray (LibList.update (abs i) w L) p).
Proof using.
  introv Hi. unfold harray. xchange (hseg_focus i). { math. }
  math_rewrite (i - 0 = i). xsimpl. intros w.
  xchange (hforall_specialize w). xsimpl.
  rewrite* LibList.length_update.
Qed.

Arguments harray_focus : clear implicits.

Exercise: 3 stars, standard, optional (harray_focus_read)

Prove that the "focus-read" lemma is a direct consequence of the general version of the focus lemma harray_focus. Hint: use LibList.update_nth_same.
Lemma harray_focus_read : i L p,
  0 i < length L
      harray L p
  ==> let v := LibList.nth (abs i) L in
      hcell v p i \* (hcell v p i \−∗ harray L p).
Proof using. (* FILL IN HERE *) Admitted.
Arguments harray_focus_read : clear implicits.

Optional Material

In this section, we show how to implement array operations in terms of lower-level primitive operations such as block allocation and pointer arithmetic.

Semantics of Pointer Arithmetic

The operation val_ptr_add p n applies to a pointer p and an integer n, and returns the address p+n. In other words, it computes the address of the n-th cell past the cell at location p. We assume val_ptr_add to be a primitive of the language.
Parameter val_ptr_add : prim.
The evaluation rule and the general specification for pointer addition are shown below. They both require p+n to be a nonnegative integer.
Parameter eval_ptr_add : p n s Q,
  p + n 0
  Q (val_loc (abs (p + n))) s
  eval s (val_ptr_add (val_loc p) (val_int n)) Q.

Lemma triple_ptr_add : (p:loc) (n:int),
  p + n 0
  triple (val_ptr_add p n)
    \[]
    (fun r\[r = val_loc (abs (p + n))]).
Proof using.
  introv R Hs. applys* eval_ptr_add. lets ->: hempty_inv Hs.
  applys hpure_intro. auto.
Qed.
For the math tactic provided by the TLC library to behave well on goals involving expressions of the form p+n involved in calls to val_ptr_add, we need a small tweak. We instantiate a hook of the math tactic to registier loc as transparent type for this tactic.
Ltac is_additional_arith_type T ::=
  match T with
  | locconstr:(true)
  end.
For the purpose of this course, we only need to shift pointers by a nonnegative number of cells. We show below a simplified specification featuring the premise n 0 instead of p+n 0.
Lemma triple_ptr_add_nonneg : (p:loc) (n:int),
  n 0
  triple (val_ptr_add p n)
    \[]
    (fun r\[r = val_loc (p + abs n)%nat]).
Proof using.
  introv Hn. applys triple_conseq triple_ptr_add.
  { math. } { xsimpl. } { xsimpl. intros ? →. fequal. math. }
Qed.

#[export]Hint Resolve triple_ptr_add_nonneg : triple.

Semantics of Low-Level Block Allocation

The operation val_alloc n allocates a block of n consecutive cells. Starting from a state sa, it produces a state described as the union of sb and sa, where sb consists of consecutive of n consecutive cells. In the evaluation rule shown below, Fmap.conseq ... p builds a state with a range of cells starting a location p and with contents described by the list L. Each of these cells is specified as having the special value val_uninit as contents.
Parameter val_alloc : val.

Parameter eval_alloc : n sa Q,
  n 0
  ( p sb,
    sb = Fmap.conseq (LibList.make (abs n) val_uninit) p
    p null
    Fmap.disjoint sa sb
    Q (val_loc p) (sb \u sa))
  eval sa (val_alloc (val_int n)) Q.
The specification of val_alloc is expressed using the heap predicate hrange L p to describe a range of consecutive cells -- a heap produced by Fmap.conseq L p. The structure of the recursive definition of hrange resembles that of hseg.
Fixpoint hrange (L:list val) (p:loc) : hprop :=
  match L with
  | nil\[]
  | x::L'(p ~~> x) \* (hrange L' (p+1)%nat)
  end.

Lemma hrange_intro : L p,
  (hrange L p) (Fmap.conseq L p).
Proof using.
  intros L. induction L as [|L']; intros; rew_listx.
  { applys hempty_intro. }
  { simpl. applys hstar_intro.
    { applys* hsingle_intro. }
    { applys IHL. }
    { applys Fmap.disjoint_single_conseq. left. math. } }
Qed.
The allocation operation val_alloc is then specified as producing a heap described using hrange for a list of uninitialized values. Note: in ML, uninitialized values are never exposed to the programmer; val_alloc is only meant to be invoked internally by the runtime system.
Lemma triple_alloc : n,
  n 0
  triple (val_alloc n)
    \[]
    (funloc p hrange (LibList.make (abs n) val_uninit) p \* \[p null]).
Proof using.
  introv Hn Hsa. applys* eval_alloc. intros p sb Esb Hp D.
  lets ->: hempty_inv Hsa. applys hexists_intro p.
  rewrite hstar_hpure_l. split*. rewrite Fmap.union_empty_r.
  rewrite hstar_hpure_r. split*. subst sb. applys* hrange_intro.
Qed.

#[export]Hint Resolve triple_alloc : triple.

Low-Level Implementation of Arrays

We are now ready to explain how a runtime system could implement the operations length, get, set, and make on arrays, in terms of val_alloc and val_ptr_add for allocating memory blocks and computing pointer offsets, as well as val_get and val_set for reading and writing into individual memory cells.
The operation that obtains the length of an array is implemented by reading the integer stored into the header field of that array.
Definition val_array_length : val :=
  <{ fun 'p val_get 'p }>.
The operation that reads into an array cell, written val_array_get p i, is implemented as a read at the location p + 1 + abs i.
Definition val_array_get : val :=
  <{ fun 'p 'i
       let 'p1 = val_ptr_add 'p 1 in
       let 'q = val_ptr_add 'p1 'i in
       val_get 'q }>.
The operation that reads into an array cell, written val_array_set p i v, is implemented as a write of v at the location p + 1 + abs i.
Definition val_array_set : val :=
  <{ fun 'p 'i 'v
       let 'p1 = val_ptr_add 'p 1 in
       let 'q = val_ptr_add 'p1 'i in
       val_set 'q 'v }>.
The auxiliary function fill is used to implement make. The operation fill p i n v fills the range of the array p, starting at index i, with n copies of the value v. The code below provides a naive recursive implementation of fill.
Definition val_array_fill : val :=
  <{ fix 'f 'p 'i 'n 'v
       let 'b = 'n > 0 in
       if 'b then
         val_array_set 'p 'i 'v;
         let 'm = 'n - 1 in
         let 'j = 'i + 1 in
         'f 'p 'j 'm 'v
       end }>.
The operation val_array_make n v creates an array of length n filled with copies of the value v. It is implemented as the allocation of a block of length n+1 at a fresh address p, followed by the write of the value n in the header, and with a call to fill p 0 n v for filling the n cells of the array p with copies of the value v.
Definition val_array_make : val :=
  <{ fun 'n 'v
       let 'm = 'n + 1 in
       let 'p = val_alloc 'm in
       val_set 'p 'n;
       val_array_fill 'p 0 'n 'v;
       'p }>.

Verification of Low-Level Operations for Arrays

Now we can prove that the implementations presented above for length, get, set, and make indeed satisfy the specifications axiomatized for them earlier in this chapter. For these proofs, we need to set the definition of hheader as transparent.
Global Transparent hheader.
We also add a hint for xapp, to automatically handle the arithmetic preconditions arising from calls to val_ptr_add and val_alloc.
#[local] Hint Extern 1 (_ _) ⇒ math : triple.
Moreover, we customize the behavior of the "*" suffix that appears in next to Coq tactics, for this symbol to trigger not a call to eauto but instead a call to eauto with maths.
Local Ltac auto_star ::= eauto with maths.
Here are the proofs for the small-footprint specifications.
Lemma triple_array_length_hheader : n p,
  triple (val_array_length p)
    (hheader n p)
    (fun r\[r = n] \* hheader n p).
Proof using. xwp. unfold hheader. xapp. xsimpl*. Qed.

Lemma triple_array_get_hcell : v p i,
  triple (val_array_get p i)
    (hcell v p i)
    (fun r\[r = v] \* hcell v p i).
Proof using.
  xwp. unfold hcell. xpull. intros Hi. xapp. xapp. xapp. xsimpl*.
Qed.

Lemma triple_array_set_hcell : p i v w,
  triple (val_array_set p i v)
    (hcell w p i)
    (fun _hcell v p i).
Proof using.
  xwp. unfold hcell. xpull. intros Hi. xapp. xapp. xapp. xsimpl*.
Qed.
Then, the proofs of specifications operating on array segments (hseg).
Lemma triple_array_get_hseg : L p i j,
  0 i - j < length L
  triple (val_array_get p i)
    (hseg L p j)
    (fun r\[r = LibList.nth (abs (i-j)) L] \* hseg L p j).
Proof using.
  introv M. xtriple. xchange* (hseg_focus i).
  xapp triple_array_get_hcell.
  xchange (hforall_specialize (nth (abs (i - j)) L)).
  rewrite* update_nth_same. { xsimpl*. }
Qed.

Lemma triple_array_set_hseg : L p i j v,
  0 i - j < length L
  triple (val_array_set p i v)
    (hseg L p j)
    (fun _hseg (LibList.update (abs (i-j)) v L) p j).
Proof using.
  introv M. xtriple. xchange* (hseg_focus i).
  xapp triple_array_set_hcell. xchange (hforall_specialize v).
Qed.

Lemma hseg_eq_hrange : L p,
  hseg L p 0 = hrange L (p+1)%nat.
Proof using.
  asserts M: ( L (k:nat) p, hseg L p k = hrange L (p+1+k)%nat).
  { intros L. induction L; intros; simpl.
    { auto. }
    { math_rewrite (p + 1 + k + 1 = p + 1 + (k + 1))%nat.
      rewrite <- IHL. unfold hcell. xsimpl.
      { intros _. applys himpl_of_eq; fequals_rec; math. }
      { math. }
      { applys himpl_of_eq; fequals_rec; math. } } }
  intros. rewrite (M L 0%nat). fequals. math.
Qed.

Lemma triple_array_fill : n L p i v,
  n = length L
  triple (val_array_fill p i n v)
    (hseg L p i)
    (fun _hseg (LibList.make (abs n) v) p i).
Proof using.
  intros n. induction_wf IH: (downto 0) n.
  introv Hn. xwp. xapp. xif; intros C.
  { xapp triple_array_set_hseg. { math. }
    math_rewrite (abs (i - i) = 0%nat).
   destruct L as [|x L']; rew_list in *. { false. math. }
   rew_listx. xchange hseg_cons. xapp. xapp.
    xapp; try math. xchange <- hseg_cons.
    rewrites* (>> LibList.make_pos (abs n) v).
    math_rewrite* (abs (n-1) = abs n - 1)%nat. }
  { xval. math_rewrite (n = 0) in *.
    destruct L; rew_listx in *; tryfalse. auto. }
Qed.

Lemma triple_array_make_hseg : n v,
  n 0
  triple (val_array_make n v)
    \[]
    (funloc p hheader (abs n) p \* hseg (LibList.make (abs n) v) p 0).
Proof using.
  introv Hn. xwp. xapp. xapp. intros q Hq.
  math_rewrite (abs (n+1) = S (abs n)). rew_listx. simpl.
  xapp. xchange* <- (hheader_eq q). xchange <- hseg_eq_hrange.
  xapp triple_array_fill. rew_listx*. xval. xsimpl*.
  applys himpl_of_eq; fequals_rec; math.
Qed.
Finally, the proofs of specifications expressed in terms of harray.
Lemma triple_array_get : L p i,
  0 i < length L
  triple (val_array_get p i)
    (harray L p)
    (fun r\[r = LibList.nth (abs i) L] \* harray L p).
Proof using.
  introv M. xtriple. unfold harray. xapp triple_array_get_hseg. { math. }
  math_rewrite (i - 0 = i). xsimpl*.
Qed.

Lemma triple_array_set : L p i v,
  0 i < length L
  triple (val_array_set p i v)
    (harray L p)
    (fun _harray (LibList.update (abs i) v L) p).
Proof using.
  introv M. xtriple. unfold harray. xapp triple_array_set_hseg. { math. }
  math_rewrite (i - 0 = i). rew_listx. xsimpl*.
Qed.

Lemma triple_array_length : L p,
  triple (val_array_length p)
    (harray L p)
    (fun r\[r = length L] \* harray L p).
Proof using.
  intros. xtriple. unfold harray. xapp triple_array_length_hheader. xsimpl*.
Qed.

Lemma triple_array_make : n v,
  n 0
  triple (val_array_make n v)
    \[]
    (funloc p harray (LibList.make (abs n) v) p).
Proof using.
  intros. xtriple. unfold harray. xapp triple_array_make_hseg. { math. }
  rew_listx. xsimpl*.
Qed.

End Realization.

Appendix

Verification of the Pivot Function

Module Pivot.
Import QuickSort.
Local Ltac auto_star ::= eauto with maths.
For completeness, we include the formal verification of the pivot function. The proof is unfortunately rather cluttered with reasoning about the vals_int conversion function. The need for it stems from the fact that we are reasoning on untyped code. The actual CFML tool provides reasoning rule for well-typed code, and is thereby avoids all this kind of clutter.
We consider a simple, unoptimized implementation of the pivot function. This implementation is recursive and performs a series of swap operations.
   let swap =
    fun p j1 j2
      let x1 = p.(j1) in
      let x2 = p.(j2) in
      p.(j1) <- x2;
      p.(j2) <- x1

  let pivot p i n =
    if n < 2 then i else begin
      let j = i+1 in
      let x = p.(i) in
      let y = p.(j) in
      if yx then begin
        swap p i j;
        pivot p j (n-1);
      end else begin
        swap p j k;
        pivot p i (n-1)
      end
Definition val_array_swap : val :=
  <{ fun 'p 'j1 'j2
      let 'x1 = val_array_get 'p 'j1 in
      let 'x2 = val_array_get 'p 'j2 in
      val_array_set 'p 'j1 'x2;
      val_array_set 'p 'j2 'x1 }>.

Definition val_pivot : val :=
  <{ fix 'f 'p 'i 'n
       let 'b = 'n < 2 in
       if 'b then
         'i
       else
         let 'x = val_array_get 'p 'i in
         let 'j = 'i + 1 in
         let 'y = val_array_get 'p 'j in
         let 'm = 'n - 1 in
         let 'c = 'y 'x in
         if 'c then
           val_array_swap 'p 'i 'j;
           'f 'p 'j 'm
         else
           let 'k = 'i + 'm in
           val_array_swap 'p 'j 'k;
           'f 'p 'i 'm }>.
We first state a specialized version of array_get for array segments storing integer values.
Lemma triple_array_get_hseg_vals_int : (L:list int) p i j,
  0 i - j < length L
  triple (val_array_get p i)
    (hseg (vals_int L) p j)
    (fun r\[r = LibList.nth (abs (i-j)) L] \* hseg (vals_int L) p j).
Proof using.
  introv M. xtriple. xapp triple_array_get_hseg. { rew_list. math. }
  xsimpl. unfolds vals_int. rewrite nth_map. fequals. math.
Qed.
Next, we verify the swap function, which permutes elements at two indices inside a given array segment.
Lemma triple_array_swap_seg : p i j1 j2 (L:list val),
  0 j1-i < length L
  0 j2-i < length L
  triple (val_array_swap p j1 j2)
    (hseg L p i)
    (fun _
      hseg (LibList.update (abs (j2-i)) (LibList.nth (abs (j1-i)) L)
           (LibList.update (abs (j1-i)) (LibList.nth (abs (j2-i)) L) L)) p i).
Proof using.
  introv Hj1 Hj2. xwp.
  xapp triple_array_get_hseg. { math. }
  xapp triple_array_get_hseg. { math. }
  xapp triple_array_set_hseg. { math. }
  xapp triple_array_set_hseg. { rew_listx. math. } xsimpl.
Qed.
We derive a specification for swap specialized for the case where the elements appear in array segments.
Lemma triple_array_swap_seg_lists : L1 L2 L3 x y p i j1 j2,
  j1 = i + length L1
  j2 = i + length L1 + 1 + length L2
  triple (val_array_swap p j1 j2)
    (hseg (L1 ++ x :: L2 ++ y :: L3) p i)
    (fun _hseg (L1 ++ y :: L2 ++ x :: L3) p i).
Proof using.
  hint Inhab_val. introv H1 H2. xapp triple_array_swap_seg; rew_list*.
  applys himpl_of_eq. fequal.
  math_rewrite (abs (j1 - i) = length L1).
  math_rewrite (abs (j2 - i) = (length L1 + 1 + length L2)%nat).
  rewrite nth_middle; [|rew_list*].
  asserts_rewrite (L1 ++ x :: L2 ++ y :: L3 = (L1 ++ x :: L2) ++ y :: L3).
  { rew_list*. }
  rewrite nth_middle; [|rew_list*]. rew_list.
  rewrite* update_middle.
  asserts_rewrite (L1 & y ++ L2 ++ y :: L3 = (L1 & y ++ L2) ++ y :: L3).
  { rew_list*. }
  rewrite* update_middle; rew_list*.
Qed.
We also derive a specification for swap specialized for the case where it permutes an element with itself.
Lemma triple_array_swap_seg_self : L p i j1 j2,
  0 j1 - i < length L
  j2 = j1
  triple (val_array_swap p j1 j2)
    (hseg L p i)
    (fun _hseg L p i).
Proof using.
  introv H1 →. xapp* triple_array_swap_seg.
  do 2 rewrite* LibList.update_nth_same.
Qed.
We are now ready to prove the pivot function. For the recursion, we need to furthermore assert in the postcondition that the pivot value x is, at each recursive call, located at the head of the segment on which the recursive call is performed. This property is captured by the additional assertion x = LibList.nth 0%nat L. This assertion was not needed for the verification of quicksort.
Lemma triple_pivot' : n p i L,
  n = length L
  n 1
  triple (val_pivot p i n)
    (hseg (vals_int L) p i)
    (fun r\ j, \[r = val_int j] \*
              \ x L' L1 L2, hseg (vals_int L') p i \* \[
                  permut L L'
                x = LibList.nth 0%nat L
                L' = L1 ++ x :: L2
                j - i = length L1
                list_of_le x L1
                list_of_gt x L2 ]).
Proof using.
  intros n. induction_wf IH: (downto 0) n; introv HL Hn. xwp.
  xapp. xif; intros C.
  { xval. xsimpl (>> i (LibList.nth 0%nat L) L (@nil int) (@nil int)).
    { auto. }
    { destruct L as [|x [|]]; rew_list in *; try (false; math). splits.
      { applys permut_refl. }
      { rew_listx*. }
      { rew_listx*. }
      { math. }
      { applys Forall_nil. }
      { applys Forall_nil. } } }
  { xapp* triple_array_get_hseg_vals_int.
    xapp. xapp* triple_array_get_hseg_vals_int.
    xapp. xapp.
    math_rewrite (abs (i - i) = 0%nat).
    math_rewrite (abs (i + 1 - i) = 1%nat).
    lets* (x&L'&->): length_pos_inv_cons L. rew_list in *.
    lets* (y&L''&->): length_pos_inv_cons L'. rew_listx.
    xif; intros C'.
    { xapp (>> triple_array_swap_seg_lists
             (@nil val) (@nil val) (vals_int L'')); rew_list*.
      xchange hseg_cons. rew_list in *. xapp (>> IH (x::L'')); rew_list*.
      intros j' x' L' L1' L2' (HP&Hx&HE&Hji&Hle&Hgt). rew_listx in Hx. subst x'.
      xchange <- hseg_cons. xsimpl* (>> j' x (y::L') (y::L1') L2'). splits.
      { subst L'. applys permut_trans. applys permut_swap_first_two.
        applys* permut_cons. }
      { subst L'. rew_list*. }
      { subst L'. rew_list*. }
      { rew_list*. }
      { applys* Forall_cons. }
      { auto. } }
    { xapp. tests Cend: (L'' = nil).
      { rew_listx in *. xapp triple_array_swap_seg_self; rew_list*.
        change (val_int x::val_int y::nil) with ((val_int x::nil) & val_int y).
        xchange hseg_last. xapp (>> IH (x::nil)); rew_list*.
        intros j' L' x' L1' L2' (HP&Hx&HE&Hji&Hle&Hgt).
        lets HEQ: permut_length HP. subst L'. subst x'. rew_list in *.
        asserts ->: (L1' = nil). applys* length_zero_inv.
        asserts ->: (L2' = nil). applys* length_zero_inv.
        xchange hseg_last_r. { rew_listx. math. } rew_listx.
        xsimpl* (>> j' x (x::y::nil) (@nil int) (y::nil)); rew_listx. splits*.
        { applys permut_refl. }
        { applys* Forall_cons. } }
      { lets* (z&L'''&->): list_neq_nil_inv_last L''. rew_listx in *.
         xapp (>> triple_array_swap_seg_lists (val_int x :: nil)
          (vals_int L''') (@nil val) y z); rew_list*.
         replace (val_int x :: val_int z :: vals_int L''' & val_int y)
           with ((val_int x :: val_int z :: vals_int L''') & val_int y);
           [|rew_list*].
         xchange hseg_last.
         xapp (>> IH (x::z::L''')); rew_list*.
         intros j' x' L' L1' L2' (HP&Hx&HE&Hji&Hle&Hgt).
         lets HEQ: permut_length HP. rew_listx in *. subst x'.
         xchange hseg_last_r. { rew_list*. }
         xsimpl* (>> j' x (L1' ++ x :: L2' & y) L1' (L2'&y)). splits*.
         { subst L'. applys permut_trans. applys permut_swap_first_two.
           applys permut_trans. applys permut_swap_first_last.
           asserts_rewrite (L1' ++ x :: L2' & y = (L1' ++ x :: L2') & y).
           { rew_list*. }
           applys permut_last. applys permut_trans HP. applys permut_cons.
           applys permut_sym. applys permut_swap_first_last. }
         { subst L'. applys* Forall_last. }
         { subst L'. rew_listx*. } } } }
Qed.
As mentioned earlier, the proof is longer than we would like it to be. (It would be much simpler in the CFML tool, where invariants need not mention the vals_int conversion function.)
End Pivot.

(* 2024-11-04 20:38 *)