Verif_append2Magic wand, partial data structure

Separating Implication

Separating implication is another separation logic operator. It is written as −∗ in Verifiable C. Because of its shape, it is usually called "magic wand". The following Locate command and Check command show this notation definition and its typing information.
Require VC.Preface. (* Check for the right version of VST *)

Require Import VST.floyd.proofauto.

Locate "−∗".
   (* Notation "P '−∗' Q" := wand P Q : logic (default interpretation) *)
Check wand. (* : mpred -> mpred -> mpred *)
In separation logic, a heaplet (piece of memory) m satisfies P −∗ Q if and only if: for any possible heaplet n, if n and m are disjoint and n satisfies P, then the combination of n and m will satisfy Q.
The most important proof rule for separating implication is the adjoint property. It says, P×Q derives R if and only if P derives Q−∗R. This rule is called wand_sepcon_adjoint in Verifiable C.
Check wand_sepcon_adjoint.
  (* : forall P Q R : mpred, P * Q |-- R   <->   P |-- Q −∗ R *)
Because of this property, we also call −∗ a right adjoint of ×. In propositional logic, implication is a right adjoint of conjunction .
Lemma implies_and_adjoint:
    P Q R : Prop, (P Q R) (P (Q R)).
Proof. intuition. Qed.
This intrinsic similarity gives −∗ the name "separating implication". The following are two other important properties of −∗; we can easily find their counterparts about propositional-logic "implication".
Proof rules for separating implication:
Check wand_derives.
  (* : forall P P' Q Q' : mpred,
       P' |-- P -> Q |-- Q' -> P −∗ Q |-- P' −∗ Q' *)


Check modus_ponens_wand.
  (*   : forall P Q : mpred, P * (P −∗ Q) |-- Q  *)
Now, we learn to use the adjoint property to prove other separation-logic rules about −∗. We will start from an easy one.
Lemma wand_trivial: P Q: mpred, P |-- Q −∗ (P × Q).
Proof.
  intros.
  rewrite <- wand_sepcon_adjoint.
  apply derives_refl.
Qed.
Then, we will reprove the modus ponens rule for −∗ and × from the adjoint property.
Lemma modus_ponens_wand_from_adjoint: P Q : mpred, P × (P −∗ Q) |-- Q.
Proof.
  intros.
  rewrite sepcon_comm.
  rewritewand_sepcon_adjoint.
  apply derives_refl.
Qed.
Now prove wand_derives using wand_sepcon_adjoint and modus_ponens_wand. You can use other proof rules about ×, such as sepcon_derives. Also, the tactic sep_apply may be useful.

Exercise: 2 stars, standard: (wand_derives)

Lemma wand_derives_from_adjoint_and_modus_ponens:
   P P' Q Q' : mpred,
   P' |-- P Q |-- Q' P −∗ Q |-- P' −∗ Q'.
Proof.
(* FILL IN HERE *) Admitted.
Theorem wand_frame_ver is the counterpart of implication's transitivity. As we will see, it allows "vertical composition" of wand frames.
Check wand_frame_ver.
  (*   : forall P Q R : mpred, (P −∗ Q) * (Q −∗ R) |-- P −∗ R  *)
Prove it by wand_sepcon_adjoint and sep_apply (modus_ponens_wand ...)

Exercise: 2 stars, standard: (wand_frame_ver)

Lemma wand_frame_ver_from_adjoint_and_modus_ponens:
   P Q R : mpred, (P −∗ Q) × (Q −∗ R) |-- P −∗ R.
Proof.
(* FILL IN HERE *) Admitted.
More exercises: prove that emp −∗ emp and emp are equivalent.

Exercise: 3 stars, standard: (emp_wand_emp)

Lemma emp_wand_emp_right: emp |-- emp −∗ emp.
Proof.
(* FILL IN HERE *) Admitted.

Lemma emp_wand_emp_left: emp −∗ emp |-- emp.
Proof.
(* FILL IN HERE *) Admitted.

List segments by magic wand

Require Import VC.append.
Require Import VC.Verif_append1.
In Verif_append1, we recursively defined a new separation logic predicate: list segment. That predicate describes a heaplet that contains a partial linked list.
In this chapter, we learn a different way of describing partial data structures--we use magic wand together with quantifiers.
This is a natural idea. Using linked lists as an example, adding a linked list to the tail of a partial linked list (or a list segment) will result in a complete linked list from the head. Thus, a partial linked list can be described by "the added list −∗ the complete list". Formally:
Definition wlseg (contents: list val) (x y: val) : mpred :=
  ALL tail: list val, listrep tail y −∗ listrep (contents ++ tail) x.
Here, "w" in "wlseg" represents "wand".
This definition is very different from lseg and is beautifully simple, and it generalizes nicely to other data structures such as trees.
Let's prove some basic properties of wlseg. The following lemmas show how a wand expression can be introduced (emp_wlseg and singleton_wlseg), how a wand expression can be eliminated (wlseg_list) and how two wand expressions can merge (wlseg_wlseg).
There are two logical operators in this definition, −∗ and the universal quantifier. Previously, we have learned how to prove properties about × and −∗. To prove properties about universal quantifiers, we will use allp_left and allp_right.
Check allp_left.
  (*  : forall (P : ?B -> mpred) (x : ?B) (Q : mpred),
       P x |-- Q -> ALL x : _ , P x |-- Q   *)

Check allp_right.
  (*  : forall (P : mpred) (Q : ?B -> mpred),
       (forall v : ?B, P |-- Q v) -> P |-- ALL x : _ , Q x  *)

The first property of wlseg is that we can introduce wlseg from emp.
Lemma emp_wlseg: (x: val),
  emp |-- wlseg [] x x.
Proof.
  intros.
  unfold wlseg.
  apply allp_right; intro tail.
  rewrite <- wand_sepcon_adjoint.
  rewrite emp_sepcon.
  simpl app.
  apply derives_refl.
Qed.
Next, we show that two wlseg predicates can be merged into one.
Lemma wlseg_wlseg: (s1 s2: list val) (x y z: val),
  wlseg s2 y z × wlseg s1 x y |-- wlseg (s1 ++ s2) x z.
Proof.
 intros.
 unfold wlseg.
First, extract the universally quantified variable tail on the right side.
 apply allp_right; intro tail.
Next, instantiate the first quantified tail0 on the left with tail.
 rewritewand_sepcon_adjoint.
 apply (allp_left _ tail).
 rewrite <- wand_sepcon_adjoint.
Then, instantiate the other quantified tail0 on the left with s2 ++ tail.
 rewrite sepcon_comm, → wand_sepcon_adjoint.
 apply (allp_left _ (s2 ++ tail)).
 rewrite <- wand_sepcon_adjoint, sepcon_comm.
Finally, complete the proof with wand_frame_ver.
 rewrite <- app_assoc.
 apply wand_frame_ver.
Qed.
This theorem wlseg_wlseg shares the same form with lseg_lseg. In fact, properties about lseg and wlseg are very similar. The following exercises are to prove the counterparts of singleton_lseg and lseg_list.

Exercise: 2 stars, standard: (singleton_wlseg)

Lemma singleton_wlseg: (a: val) (x y: val),
  data_at Tsh t_list (a, y) x |-- wlseg [a] x y.
Proof.
(* FILL IN HERE *) Admitted.

Exercise: 2 stars, standard: (wlseg_list)

Lemma wlseg_list: (s1 s2: list val) (x y: val),
  wlseg s1 x y × listrep s2 y |-- listrep (s1 ++ s2) x.
Proof.
(* FILL IN HERE *) Admitted.

Proof of the append function by wlseg

Now, we are ready to reprove the correctness for the C program append. This time, we will use wlseg to write the loop invariant.

Exercise: 3 stars, standard: (body_append_alter2)

Lemma body_append_alter2: semax_body Vprog Gprog f_append append_spec.
Proof.
start_function.
forward_if. (* if (x == NULL) *)
- (* If-then *)
  rewrite (listrep_null _ x) by auto.
  (* FILL IN HERE *) admit.
- (* If-else *)
  rewrite (listrep_nonnull _ x) by auto.
  Intros h r u.
  forward. (* t = x; *)
  forward. (* u = t -> tail; *)
Here, we use wlseg to represent a list segment.
  forward_while
    (EX s1a: list val, EX b: val, EX s1c: list val, EX t: val, EX u: val,
       PROP (s1 = s1a ++ b :: s1c)
       LOCAL (temp _x x; temp _t t; temp _u u; temp _y y)
       SEP (wlseg s1a x t;
            data_at Tsh t_list (b, u) t;
            listrep s1c u;
            listrep s2 y))%assert.
 + (* current assertion implies loop invariant *)
   
To derive a loop invariant from the current assertion, the key point is to introduce wlseg. You may find emp_wlseg helpful here.
  (* FILL IN HERE *) admit.
 + (* loop test is safe to execute *)
     entailer!.
 + (* loop body preserves invariant *)
   
Step forward through the loop body; along the way you'll need to do other transformations on the current assertion, to uncover opportunities to step forward. At the end of the loop body, you need to prove that a list segment for s1a and a singleton cell for b forms a longer list segment, whose contents is s1a ++ b :: nil. You may find singleton_wlseg and wlseg_wlseg useful there.
  (* FILL IN HERE *) admit.
 + (* after the loop *)
   
After you symbolicly execute the return command, you need to establish one single linked list with contents s1a ++ b :: s2 from a list segment for s1a, a singleton cell for b and another linked list for s2. You may find singleton_wlseg and wlseg_list useful there.
  (* FILL IN HERE *) admit.
(* FILL IN HERE *) Admitted.

The general idea: magic wand as frame

Let's review the proof script above. Before the loop, we first derive wlseg [] x x from emp. After every iteration of the loop body, we merge a piece of singleton list segment wlseg [b] t u into it. When exiting the loop, we get wlseg [s1a] x t where s1 = s1a ++ [b]. Eventually, this list segment is merged with a tail listrep ([b] ++ s2) t, which results in listrep (s1 ++ s2) x.
From where the list segment is introduced in the proof, to where the list segment is eliminated by merging, the C program never modifies the submemory described by that wlseg predicate. In separation logic, such a separating conjunct is called a "frame". Thus, the general idea here is to use a wand expression to describe a partial data structure and this wand expression will act as a frame in program verification.
In the proof of body_append_alter2, we only need four of wlseg's properties: emp_wlseg, singleton_wlseg, wlseg_wlseg and wlseg_list. They are used to introduce, merge and eliminate wlseg predicates. Here are some general patterns beyond these specific rules.
Lemma wandQ_frame_elim_mpred: {A: Type} (P Q: A mpred) (a: A),
  (ALL x : A, P x −∗ Q x) × P a |-- Q a.
Proof.
  intros.
  rewritewand_sepcon_adjoint.
  apply (allp_left _ a).
  apply derives_refl.
Qed.
"ver" in the name of the next lemma stands for "vertical composition" of wand frames. One wand-frame is nested inside another.
Lemma wandQ_frame_ver_mpred: {A: Type} (P Q R: A mpred),
  (ALL x : A, P x −∗ Q x) × (ALL x: A, Q x −∗ R x) |-- ALL x: A, P x −∗ R x.
Proof.
  intros.
  apply allp_right; intro a.
  rewritewand_sepcon_adjoint.
  apply (allp_left _ a).
  rewrite <- wand_sepcon_adjoint.
  rewrite sepcon_comm, → wand_sepcon_adjoint.
  apply (allp_left _ a).
  rewrite <- wand_sepcon_adjoint, sepcon_comm.
  apply wand_frame_ver.
Qed.

Case study: list segments for linked list box

In the following exercise, you are going to apply the magic-wand-as-frame method on a slightly different data structure.
Consider the following C function, append2.
struct list * append2 (struct list * x, struct list * y) {
  struct list **retp, **curp;
  retp = & x;
  curp = & x;
  while ( *curp != NULL ) {
    curp = & (( *curp ) -> tail);
  }
  *curp = y;
  return *retp;
}
In comparison, this is append.
struct list *append (struct list *x, struct list *y) {
  struct list *t, *u;
  if (x==NULL)
    return y;
  else {
    t = x;
    u = t->tail;
    while (u!=NULL) {
      t = u;
      u = t->tail;
    }
    t->tail = y;
    return x;
  }
}
In append, u always equals t tail after every iteration. When exiting the loop, the value of u is always null; that is not important. More important is the address from whence the null value is loaded. A new value will be stored into that location in memory. The program variable t is used to remember that address.
The C function append2 implements linked-list append in an alternative way. In this function, curp's value is not an address in the linked list. Instead, it records where a linked list address is stored in memory. Specifically, when curp points the head pointer x, the value of curp is the address of x. When curp points to some intermediate linked list node, the value of curp is the predecessor node's tail field address. Using this implementation, we do not need to test whether x is null in the beginning.
The following separation logic predicate defines this data structure.
Definition t_list_box := tptr t_list.

Definition listboxrep (contents: list val) (x: val) :=
  EX y: val, data_at Tsh t_list_box y x × listrep contents x.

Definition lbseg (contents: list val) (x y: val) :=
  ALL tail: list val, listboxrep tail y −∗ listboxrep (contents ++ tail) x.
Previously, we have shown that we can introduce, eliminate and merge wand expressions by proving emp_wlseg, singleton_wlseg, wlseg_list and wlseg_wlseg. Now, your task is to prove lbseg's properties. Hint: proving wlseg's properties and proving lbseg's properties should be very similar.

Exercise: 1 star, standard: (emp_lbseg)

Introducing a wand expression, lbseg, from emp.
Lemma emp_lbseg: (x: val),
  emp |-- lbseg [] x x.
Proof.
(* FILL IN HERE *) Admitted.

Exercise: 2 stars, standard: (lbseg_lbseg)

Merging two wand expressions.
Lemma lbseg_lbseg: (s1 s2: list val) (x y z: val),
  lbseg s2 y z × lbseg s1 x y |-- lbseg (s1 ++ s2) x z.
Proof.
(* FILL IN HERE *) Admitted.

Exercise: 2 stars, standard: (listbox_lbseg)

Eliminating a wand expression.
Lemma listbox_lbseg: (s1 s2: list val) (x y: val),
  lbseg s1 x y × listboxrep s2 y |-- listboxrep (s1 ++ s2) x.
Proof.
(* FILL IN HERE *) Admitted.

Comparison and connection: lseg vs. wlseg

We have demonstrated two different approaches to define a separation logic predicate for list segments. In Verif_append1 we define it using recursive definition over the list. In this chapter, we use a quantifed magic wand expression. It is natural to ask: what is the relation between lseg and wlseg? Are they equivalent to each other? They following theorems can offer a brief answer.
First of all, recursive defined lseg is a logically stronger predicate than wlseg.
Lemma lseg2wlseg: s x y, lseg s x y |-- wlseg s x y.
Proof.
  intros.
  unfold wlseg.
  apply allp_right; intros tail.
  rewrite <- wand_sepcon_adjoint.
  sep_apply (lseg_list s tail x y).
  apply derives_refl.
Qed.
In some special cases, wlseg derives lseg as well.
Lemma wlseg2lseg_nullval: s x, wlseg s x nullval |-- lseg s x nullval.
Proof.
  intros.
  unfold wlseg.
  apply allp_left with (@nil val).
  unfold listrep at 1.
  rewrite prop_true_andp by auto.
  entailer!.
  rewrite <- app_nil_end.
The proof goal now has the form: a wand expression derives some wand-free assertion. Usually, this is a tough task because there is no good way to eliminate magic wand on left side. But this proof goal is special. We can add an extra separating conjunct emp to the left side and use modus_ponens_wand to eliminate wand.
  rewrite <- (emp_sepcon (emp −∗ listrep s x)).
  sep_apply (modus_ponens_wand emp (listrep s x)).
Then, easy!
  apply listrep2lseg.
Qed.
Combining these two lemmas above together, we know that wlseg-to-null equals lseg.
Lemma wlseg_nullval: s x, wlseg s x nullval = lseg s x nullval.
Proof.
  intros.
  apply pred_ext.
  + apply wlseg2lseg_nullval.
  + apply lseg2wlseg.
Qed.

Corollary wlseg_listrep_equiv: s x, wlseg s x nullval = listrep s x.
Proof.
  intros.
  rewrite wlseg_nullval, lseg_listrep_equiv.
  reflexivity.
Qed.
However, wlseg does not derive lseg in general. As mentioned above, to eliminate magic wand on the left side is hard. When y nullval, we cannot instantiate the universally quantified variable tail inside (wlseg s x y) to get the form emp −∗ _. The following is a counterexample of the general entailment from wlseg to lseg. On one hand, it is obvious that data_at_ Tsh t_list y ⊢/- lseg [a] x y. On the other hand, data_at_ Tsh t_list y |-- wlseg [a] x y. See the following theorem:
Lemma wlseg_weird: a x y,
  data_at_ Tsh t_list y |-- wlseg [a] x y.
Proof.
  intros.
  unfold wlseg.
  apply allp_right; intros s.
  rewrite <- wand_sepcon_adjoint.
  destruct s.
  + unfold listrep at 1.
    entailer!.
    destruct H as [H _].
    contradiction.
  + unfold listrep at 1; fold listrep.
    Intros u.
    sep_apply (data_at_conflict Tsh t_list (default_val t_list) (v, u) y); auto.
    entailer!.
Qed.

(* 2024-12-27 01:34 *)