TImp: Case Studya Typed Imperative Language
Having covered the basics of QuickChick in the previous
chapter, we are ready to dive into a more realistic case study: a
typed variant of Imp, the simple imperative language introduced in
Logical Foundations.
The version of Imp presented there enforces a syntactic separation
between boolean and arithmetic expressions: bexp just ranges
over boolean expressions, while aexp ranges over arithmetic
ones. Moreover, variables are only allowed in aexp and hence
only take numeric values. By contrast, in Typed Imp (TImp) we
collapse the expression syntax and allow variables to range over
both numbers and booleans. With the unified syntax, we introduce
the notion of well-typed Imp expressions and programs (where
every variable only ranges over values of a single type throughout
the whole program). We then give an operational semantics to TImp
in the form of a (partial) evaluation function -- partial since,
in the unified syntax, we can write nonsensical expressions such
as 0 + True.
A common mantra in functional programming is "well-typed programs
cannot go wrong," and TImp is no exception. The soundness
property for TImp will state that evaluating well-typed
expressions and programs always succeeds.
From the point of view of testing, soundness is interesting
because it is a conditional property. As we saw in the previous
chapter, testing such properties effectively requires custom
generators. In this chapter, we show how to scale the techniques
for writing generators explained in QC to more realistic
generators for well-typed expressions and programs. In addition,
we dicuss the need for custom shrinkers preserving invariants, a
problem dual to that of custom generators.
Acknowledgement: We are grateful to Nicolas Koh for important
contributions to an early version of this chapter.
For the type of identifiers of TImp we will use a wrapper around
plain natural numbers.
Identifiers, Types and Contexts
Identifiers
We will need one identifier-specific operation, fresh: given any
finite set of identifiers, we can produce one that is distinct
from all other identifiers in the set.
To compute a fresh id given a list of ids we can just produce
the number that is 1 larger than the maximum element:
Fixpoint max_elt (al:list id) : nat :=
match al with
| nil ⇒ 0
| (Id n')::al' ⇒ max n' (max_elt al')
end.
Definition fresh (al:list id) : id :=
Id (S (max_elt al)).
match al with
| nil ⇒ 0
| (Id n')::al' ⇒ max n' (max_elt al')
end.
Definition fresh (al:list id) : id :=
Id (S (max_elt al)).
We will also need a way of testing for equality, which we can
derive with the standard dec_eq tactic.
One advantage of using natural numbers as identifiers is that
we can take advantage of the Show instance of nat to print
them.
To generate identifiers for TImp, we will not just generate
arbitrary natural numbers. More often than not, we will need to
generate a set of identifiers, or pick an identifier from such a
set. If we represent a set as a list, we can do the former with a
recursive function that generates n fresh nats starting from
the empty list. For the latter, we have QuickChick's elems_
combinator.
Exercise: 2 stars, standard (genId)
Write a Gen instance for id using the elems_ combinator and get_fresh_ids.
(* FILL IN HERE *)
☐
☐
That is, TImp has two kinds of values: booleans and natural
numbers.
To use ty in testing, we will need Arbitrary, Show, and
Dec instances.
In QC.v, we saw how to write such generators by hand.
We also saw, however, that this process can largely be automated
for simple inductive types (like ty, nat, list, tree, etc.).
QuickChick provides a top-level vernacular command to derive such
instances.
Derive (Arbitrary, Show) for ty.
(* ==>
GenSizedty is defined
Shrinkty is defined
Showty is defined
*)
Check GenSizedty.
(* ==> GenSizedty : GenSized ty *)
Check Shrinkty.
(* ==> Shrinkty : Shrink ty *)
Check Showty.
(* ==> Showty : Show ty *)
(* ==>
GenSizedty is defined
Shrinkty is defined
Showty is defined
*)
Check GenSizedty.
(* ==> GenSizedty : GenSized ty *)
Check Shrinkty.
(* ==> Shrinkty : Shrink ty *)
Check Showty.
(* ==> Showty : Show ty *)
Decidable equality instances are not yet derived fully
automatically by QuickChick. However, the boilerplate we have to
write is largely straightforward. As we saw in the previous
chapters, Dec is a typeclass wrapper around ssreflect's
decidable and we can use the dec_eq tactic to automate
the process.
List-Based Maps
- empty : To create the empty map.
- get : To look up the binding of an element, if any.
- set : To update the binding of an element.
- dom : To get the list of keys in the map.
The empty map is the empty list.
To get the binding of an identifier x, we just need to walk
through the list and find the first cons cell where the key
is equal to x, if any.
Fixpoint map_get {A} (m : Map A) x : option A :=
match m with
| [] ⇒ None
| (k, v) :: m' ⇒ if x = k ? then Some v else map_get m' x
end.
match m with
| [] ⇒ None
| (k, v) :: m' ⇒ if x = k ? then Some v else map_get m' x
end.
To set the binding of an identifier, we just need to cons
it at the front of the list.
Finally, the domain of a map is just the set of its keys.
Fixpoint map_dom {A} (m:Map A) : list id :=
match m with
| [] ⇒ []
| (k', v) :: m' ⇒ k' :: map_dom m'
end.
match m with
| [] ⇒ []
| (k', v) :: m' ⇒ k' :: map_dom m'
end.
We next introduce a simple inductive relation, bound_to m x a, that
holds precisely when the binding of some identifier x is equal to a in
m
Inductive bound_to {A} : Map A → id → A → Prop :=
| Bind : ∀ x m a, map_get m x = Some a → bound_to m x a.
| Bind : ∀ x m a, map_get m x = Some a → bound_to m x a.
Deciding bound_to (optional)
#[export] Instance dec_bound_to {A : Type} Gamma x (T : A)
`{D : ∀ (x y : A), Dec (x = y)}
: Dec (bound_to Gamma x T).
Proof.
constructor. unfold ssrbool.decidable.
destruct (map_get Gamma x) eqn:Get.
`{D : ∀ (x y : A), Dec (x = y)}
: Dec (bound_to Gamma x T).
Proof.
constructor. unfold ssrbool.decidable.
destruct (map_get Gamma x) eqn:Get.
After unfolding decidable and destructing map_get Gamma x, we are
left with two subgoals. In the first, we know that map_get Gamma x =
Some a and effectively want to decide whether map_get Gamma x = Some
T or not. Which means we need to decide whether a = T. Thankfully,
we can decide that using our hypothesis D.
- destruct (D a T) as [[Eq | NEq]]; subst.
At this point, the first goal can be immediately decided positevely
using constructor.
+ left. constructor. auto.
In the second subgoal, we can show that bound_to doesn't hold.
+ right; intro Contra; inversion Contra; subst; clear Contra.
congruence.
congruence.
Both of these tactic patterns are very common in non-trival Dec
instances. It is worth we automating them a bit using LTac.
Abort.
A lot of the time, we can immediately decide a property positivly
using constructor applications. That is captured in solve_left.
Ltac solve_left := try solve [left; econstructor; eauto].
Much of the time, we can also immediately decide that a property
doesn't hold by assuming it, doing inversion, and using
congruence.
Ltac solve_right :=
let Contra := fresh "Contra" in
try solve [right; intro Contra; inversion Contra; subst;
clear Contra; eauto; congruence].
let Contra := fresh "Contra" in
try solve [right; intro Contra; inversion Contra; subst;
clear Contra; eauto; congruence].
We group both in a single tactic, which does nothing at all if
it fails to solve a goal, thanks to try solve.
Ltac solve_sum := solve_left; solve_right.
We can now prove the Dec instance quite concisely.
#[export] Instance dec_bound_to {A : Type} Gamma x (T : A)
`{D : ∀ (x y : A), Dec (x = y)}
: Dec (bound_to Gamma x T).
`{D : ∀ (x y : A), Dec (x = y)}
: Dec (bound_to Gamma x T).
Proof.
constructor. unfold ssrbool.decidable.
destruct (map_get Gamma x) eqn:Get; solve_sum.
destruct (D a T) as [[Eq | NEq]]; subst; solve_sum.
Defined.
constructor. unfold ssrbool.decidable.
destruct (map_get Gamma x) eqn:Get; solve_sum.
destruct (D a T) as [[Eq | NEq]]; subst; solve_sum.
Defined.
Given a context Gamma and a type T, we can try to generate a
random identifier whose binding in Gamma is T.
We use List.filter to extract all of the elements in Gamma
whose type is equal to T and then, for each (a,T') that
remains, return the name a. We use the oneOf_ combinator to
pick an generator from this list at random.
Since the filtered list might be empty we return an option,
we use ret None as the default element for oneOf_.
Definition gen_typed_id_from_context (Gamma : context) (T : ty)
: G (option id) :=
oneOf_ (ret None)
(List.map (fun '(x,T') ⇒ ret (Some x))
(List.filter (fun '(x,T') ⇒ T = T'?) Gamma)).
: G (option id) :=
oneOf_ (ret None)
(List.map (fun '(x,T') ⇒ ret (Some x))
(List.filter (fun '(x,T') ⇒ T = T'?) Gamma)).
We also need to generate typing contexts.
Given some natural number n to serve as the size of the context,
we first create its domain, n fresh identifiers. We then create n
arbitrary types with vectorOf, using the Gen instance for ty
we derived earlier. Finally, we zip (List.combine) the domain
with the ranges which creates the (list-based) map.
Definition gen_context (n : nat) : G context :=
let domain := get_fresh_ids n [] in
range <- vectorOf n arbitrary ;;
ret (List.combine domain range).
let domain := get_fresh_ids n [] in
range <- vectorOf n arbitrary ;;
ret (List.combine domain range).
Expressions
Inductive exp : Type :=
| EVar : id → exp
| ENum : nat → exp
| EPlus : exp → exp → exp
| EMinus : exp → exp → exp
| EMult : exp → exp → exp
| ETrue : exp
| EFalse : exp
| EEq : exp → exp → exp
| ELe : exp → exp → exp
| ENot : exp → exp
| EAnd : exp → exp → exp.
| EVar : id → exp
| ENum : nat → exp
| EPlus : exp → exp → exp
| EMinus : exp → exp → exp
| EMult : exp → exp → exp
| ETrue : exp
| EFalse : exp
| EEq : exp → exp → exp
| ELe : exp → exp → exp
| ENot : exp → exp
| EAnd : exp → exp → exp.
To print expressions we derive a Show Instance.
Derive Show for exp.
Typed Expressions
Reserved Notation "Gamma '|⊢' e '\IN' T" (at level 40).
Inductive has_type : context → exp → ty → Prop :=
| Ty_Var : ∀ x T Gamma,
bound_to Gamma x T → Gamma |⊢ EVar x \IN T
| Ty_Num : ∀ Gamma n,
Gamma |⊢ ENum n \IN TNat
| Ty_Plus : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TNat → Gamma |⊢ e2 \IN TNat →
Gamma |⊢ EPlus e1 e2 \IN TNat
| Ty_Minus : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TNat → Gamma |⊢ e2 \IN TNat →
Gamma |⊢ EMinus e1 e2 \IN TNat
| Ty_Mult : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TNat → Gamma |⊢ e2 \IN TNat →
Gamma |⊢ EMult e1 e2 \IN TNat
| Ty_True : ∀ Gamma, Gamma |⊢ ETrue \IN TBool
| Ty_False : ∀ Gamma, Gamma |⊢ EFalse \IN TBool
| Ty_Eq : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TNat → Gamma |⊢ e2 \IN TNat →
Gamma |⊢ EEq e1 e2 \IN TBool
| Ty_Le : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TNat → Gamma |⊢ e2 \IN TNat →
Gamma |⊢ ELe e1 e2 \IN TBool
| Ty_Not : ∀ Gamma e,
Gamma |⊢ e \IN TBool → Gamma |⊢ ENot e \IN TBool
| Ty_And : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TBool → Gamma |⊢ e2 \IN TBool →
Gamma |⊢ EAnd e1 e2 \IN TBool
where "Gamma '|⊢' e '\IN' T" := (has_type Gamma e T).
Inductive has_type : context → exp → ty → Prop :=
| Ty_Var : ∀ x T Gamma,
bound_to Gamma x T → Gamma |⊢ EVar x \IN T
| Ty_Num : ∀ Gamma n,
Gamma |⊢ ENum n \IN TNat
| Ty_Plus : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TNat → Gamma |⊢ e2 \IN TNat →
Gamma |⊢ EPlus e1 e2 \IN TNat
| Ty_Minus : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TNat → Gamma |⊢ e2 \IN TNat →
Gamma |⊢ EMinus e1 e2 \IN TNat
| Ty_Mult : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TNat → Gamma |⊢ e2 \IN TNat →
Gamma |⊢ EMult e1 e2 \IN TNat
| Ty_True : ∀ Gamma, Gamma |⊢ ETrue \IN TBool
| Ty_False : ∀ Gamma, Gamma |⊢ EFalse \IN TBool
| Ty_Eq : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TNat → Gamma |⊢ e2 \IN TNat →
Gamma |⊢ EEq e1 e2 \IN TBool
| Ty_Le : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TNat → Gamma |⊢ e2 \IN TNat →
Gamma |⊢ ELe e1 e2 \IN TBool
| Ty_Not : ∀ Gamma e,
Gamma |⊢ e \IN TBool → Gamma |⊢ ENot e \IN TBool
| Ty_And : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TBool → Gamma |⊢ e2 \IN TBool →
Gamma |⊢ EAnd e1 e2 \IN TBool
where "Gamma '|⊢' e '\IN' T" := (has_type Gamma e T).
While the typing relation is almost entirely standard, there is a
choice to make about the Ty_Eq rule. The Ty_Eq constructor
above requires that the arguments to an equality check are both
arithmetic expressions (just like it was in Imp), which simplifies
some of the discussion in the remainder of the chapter. We could
have allowed for equality checks between booleans as well - that will
become an exercise at the end of this chapter.
Once again, we need a decidable instance for the typing relation of
TImp. You can skip to the next exercise if you are not interested in
specific proof details. Or read later in the chapter about how to automatically derive such instances!
We will need a bit more automation for this proof. We will
have a lot of hypotheses of the form:
IH : ∀ (T : ty) (Gamma : context),
ssrbool.decidable (Gamma |⊢ e1 \IN T)
Using a brute-force approach, we instantiate such IH
with both TNat and TBool, destruct them and then
call solve_sum.
The pose proof tactic introduces a new hypothesis
in our context, while clear IH removes it so that
we don't try the same instantiations again and
again.
IH : ∀ (T : ty) (Gamma : context),
ssrbool.decidable (Gamma |⊢ e1 \IN T)
Ltac solve_inductives Gamma :=
repeat (match goal with
[ IH : ∀ _ _, _ ⊢ _ ] ⇒
let H1 := fresh "H1" in
pose proof (IH TNat Gamma) as H1;
let H2 := fresh "H2" in
pose proof (IH TBool Gamma) as H2;
clear IH;
destruct H1; destruct H2; solve_sum
end).
repeat (match goal with
[ IH : ∀ _ _, _ ⊢ _ ] ⇒
let H1 := fresh "H1" in
pose proof (IH TNat Gamma) as H1;
let H2 := fresh "H2" in
pose proof (IH TBool Gamma) as H2;
clear IH;
destruct H1; destruct H2; solve_sum
end).
Typing in TImp is decidable: given an expression e, a context Gamma
and a type T, we can decide whether has_type Gamma e T holds.
#[export] Instance dec_has_type (e : exp) (Gamma : context) (T : ty)
: Dec (Gamma |⊢ e \IN T).
: Dec (Gamma |⊢ e \IN T).
Proof with solve_sum.
constructor.
generalize dependent Gamma.
generalize dependent T.
induction e; intros T Gamma; unfold ssrbool.decidable;
try solve [destruct T; solve_sum];
try solve [destruct T; solve_inductives Gamma].
(* bound_to case: *)
destruct (dec_bound_to Gamma i T); destruct dec; solve_sum.
Defined.
constructor.
generalize dependent Gamma.
generalize dependent T.
induction e; intros T Gamma; unfold ssrbool.decidable;
try solve [destruct T; solve_sum];
try solve [destruct T; solve_inductives Gamma].
(* bound_to case: *)
destruct (dec_bound_to Gamma i T); destruct dec; solve_sum.
Defined.
Exercise: 3 stars, standard (arbitraryExp)
Derive Arbitrary for expressions. To see how good it is at generating well-typed expressions, write a conditional property cond_prop that is (trivially) always true, with the precondition that some expression is well-typed. Try to check that property like this:QuickChickWith (updMaxSize stdArgs 3) cond_prop. This idiom sets the maximum-size parameter for all generators to 3, rather the default, which is something larger like 10. When generating examples, QuickChick will start with size 0, gradually increase the size until the maximum size is reached, and then start over. What happens when you vary the size bound?
(* FILL IN HERE *)
☐
☐
Generating Typed Expressions
Definition bindGenOpt {A B : Type}
(gma : G (option A)) (k : A → G (option B))
: G (option B) :=
ma <- gma ;;
match ma with
| Some a ⇒ k a
| None ⇒ ret None
end.
(gma : G (option A)) (k : A → G (option B))
: G (option B) :=
ma <- gma ;;
match ma with
| Some a ⇒ k a
| None ⇒ ret None
end.
This pattern is common enough that QuickChick introduces explicit
monadic notations, using a double arrow, that have to be explicitly
imported.
Import BindOptNotation.
This brings us to our first interesting generator -- one for typed
expressions. We assume that Gamma and T are inputs to the
generation process. We also use a size parameter to control the
depth of generated expressions (i.e., we'll define a sized
generator).
Let's start with a much smaller relation: has_type_1 (which
consists of just the first constructor of has_type), to
demonstrate how to build up complex generators for typed
expressions from smaller parts.
Module TypePlayground1.
Inductive has_type : context → exp → ty → Prop :=
| Ty_Var : ∀ x T Gamma,
bound_to Gamma x T → has_type Gamma (EVar x) T.
End TypePlayground1.
Inductive has_type : context → exp → ty → Prop :=
| Ty_Var : ∀ x T Gamma,
bound_to Gamma x T → has_type Gamma (EVar x) T.
End TypePlayground1.
To generate e such that has_type Gamma e T holds, we need to
pick one of its constructors (there is only one choice, here) and
then try to satisfy its preconditions by generating more things.
To satisfy Ty_Var (given Gamma and T), we need to generate
x such that bound_to Gamma x T. But we already have such a
generator! We just need to wrap it in an EVar.
Definition gen_typed_evar (Gamma : context) (T : ty) : G (option exp) :=
x <-- gen_typed_id_from_context Gamma T;;
ret (Some (EVar x)).
x <-- gen_typed_id_from_context Gamma T;;
ret (Some (EVar x)).
(Note that this is the ret of the GOpt monad.)
Now let's consider an extended typing relation, extending the
previous one with all of the constructors of has_type that do
not recursively require has_type as a side-condition. These will
be the base cases for our final generator.
Module TypePlayground2.
Inductive has_type : context → exp → ty → Prop :=
| Ty_Var : ∀ x T Gamma,
bound_to Gamma x T → has_type Gamma (EVar x) T
| Ty_Num : ∀ Gamma n,
has_type Gamma (ENum n) TNat
| Ty_True : ∀ Gamma, has_type Gamma ETrue TBool
| Ty_False : ∀ Gamma, has_type Gamma EFalse TBool.
End TypePlayground2.
Inductive has_type : context → exp → ty → Prop :=
| Ty_Var : ∀ x T Gamma,
bound_to Gamma x T → has_type Gamma (EVar x) T
| Ty_Num : ∀ Gamma n,
has_type Gamma (ENum n) TNat
| Ty_True : ∀ Gamma, has_type Gamma ETrue TBool
| Ty_False : ∀ Gamma, has_type Gamma EFalse TBool.
End TypePlayground2.
We can already generate values satisfying Ty_Var using
gen_typed_evar. For the rest of the rules, we will need to
pattern match on the input T, since Ty_Num can only be used if
T = TNat, while Ty_True and Ty_False can only be used if T
= TBool.
Definition base' Gamma T : list (G (option exp)) :=
gen_typed_evar Gamma T ::
match T with
| TNat ⇒ [ n <- arbitrary;; ret (Some (ENum n))]
| TBool ⇒ [ ret (Some ETrue) ; ret (Some EFalse) ]
end.
gen_typed_evar Gamma T ::
match T with
| TNat ⇒ [ n <- arbitrary;; ret (Some (ENum n))]
| TBool ⇒ [ ret (Some ETrue) ; ret (Some EFalse) ]
end.
We now need to go from a list of (optional) generators to a
single generator. We could do that using the oneOf combinator (which
chooses uniformly), or the freq combinator (by adding weights).
Instead, we introduce a new one, called backtrack:
backtrack : list (nat × GOpt ?A) → GOpt ?A
Just like freq, backtrack selects one of the generators
according to the input weights. Unlike freq, if the chosen
generator fails (i.e. produces None), backtrack will discard
it, choose another, and keep going until one succeeds or all
possibilities are exhausted. Our base-case generator could then be
like this:
backtrack : list (nat × GOpt ?A) → GOpt ?A
Definition base Gamma T :=
(2, gen_typed_evar Gamma T) ::
match T with
| TNat ⇒ [ (2, n <- arbitrary;; ret (Some (ENum n)))]
| TBool ⇒ [ (1, ret (Some ETrue))
; (1, ret (Some EFalse)) ]
end.
Definition gen_has_type_2 Gamma T := backtrack (base Gamma T).
(2, gen_typed_evar Gamma T) ::
match T with
| TNat ⇒ [ (2, n <- arbitrary;; ret (Some (ENum n)))]
| TBool ⇒ [ (1, ret (Some ETrue))
; (1, ret (Some EFalse)) ]
end.
Definition gen_has_type_2 Gamma T := backtrack (base Gamma T).
To see how we handle recursive rules, let's consider a third
sub-relation, has_type_3, with just variables and addition:
Module TypePlayground3.
Inductive has_type : context → exp → ty → Prop :=
| Ty_Var : ∀ x T Gamma,
bound_to Gamma x T → has_type Gamma (EVar x) T
| Ty_Plus : ∀ Gamma e1 e2,
has_type Gamma e1 TNat → has_type Gamma e2 TNat →
has_type Gamma (EPlus e1 e2) TNat.
End TypePlayground3.
Inductive has_type : context → exp → ty → Prop :=
| Ty_Var : ∀ x T Gamma,
bound_to Gamma x T → has_type Gamma (EVar x) T
| Ty_Plus : ∀ Gamma e1 e2,
has_type Gamma e1 TNat → has_type Gamma e2 TNat →
has_type Gamma (EPlus e1 e2) TNat.
End TypePlayground3.
Typing derivations involving EPlus nodes are binary trees, so we
need to add a size parameter to enforce termination. The base
case (Ty_Var3) is handled using gen_typed_evar just like
before. The non-base case can choose between trying to generate
Ty_Var3 and trying to generate Ty_Plus3. For the latter, the
input type T must be TNat, otherwise it is not
applicable. Once again, this leads to a match on T:
Fixpoint gen_has_type_3 size Gamma T : G (option exp) :=
match size with
| O ⇒ gen_typed_evar Gamma T
| S size' ⇒
backtrack
([ (1, gen_typed_evar Gamma T) ]
++ match T with
| TNat ⇒
[ (size, e1 <-- gen_has_type_3 size' Gamma TNat;;
e2 <-- gen_has_type_3 size' Gamma TNat;;
ret (Some (EPlus e1 e2))) ]
| _ ⇒ []
end)
end.
match size with
| O ⇒ gen_typed_evar Gamma T
| S size' ⇒
backtrack
([ (1, gen_typed_evar Gamma T) ]
++ match T with
| TNat ⇒
[ (size, e1 <-- gen_has_type_3 size' Gamma TNat;;
e2 <-- gen_has_type_3 size' Gamma TNat;;
ret (Some (EPlus e1 e2))) ]
| _ ⇒ []
end)
end.
Putting all this together, we get the full generator for
well-typed expressions.
Fixpoint gen_exp_typed_sized
(size : nat) (Gamma : context) (T : ty)
: G (option exp) :=
let base := base Gamma T in
let recs size' :=
match T with
| TNat ⇒
[ (size, e1 <-- gen_exp_typed_sized size' Gamma TNat ;;
e2 <-- gen_exp_typed_sized size' Gamma TNat ;;
ret (Some (EPlus e1 e2)) )
; (size, e1 <-- gen_exp_typed_sized size' Gamma TNat ;;
e2 <-- gen_exp_typed_sized size' Gamma TNat ;;
ret (Some (EMinus e1 e2)) )
; (size, e1 <-- gen_exp_typed_sized size' Gamma TNat ;;
e2 <-- gen_exp_typed_sized size' Gamma TNat ;;
ret (Some (EMult e1 e2)))]
| TBool ⇒
[ (size, e1 <-- gen_exp_typed_sized size' Gamma TNat ;;
e2 <-- gen_exp_typed_sized size' Gamma TNat ;;
ret (Some (EEq e1 e2)) )
; (size, e1 <-- gen_exp_typed_sized size' Gamma TNat ;;
e2 <-- gen_exp_typed_sized size' Gamma TNat ;;
ret (Some (ELe e1 e2)) )
; (size, e1 <-- gen_exp_typed_sized size' Gamma TBool ;;
ret (Some (ENot e1)))
; (size, e1 <-- gen_exp_typed_sized size' Gamma TBool ;;
e2 <-- gen_exp_typed_sized size' Gamma TBool ;;
ret (Some (EAnd e1 e2))) ]
end in
match size with
| O ⇒
backtrack base
| S size' ⇒
backtrack (base ++ recs size')
end.
(size : nat) (Gamma : context) (T : ty)
: G (option exp) :=
let base := base Gamma T in
let recs size' :=
match T with
| TNat ⇒
[ (size, e1 <-- gen_exp_typed_sized size' Gamma TNat ;;
e2 <-- gen_exp_typed_sized size' Gamma TNat ;;
ret (Some (EPlus e1 e2)) )
; (size, e1 <-- gen_exp_typed_sized size' Gamma TNat ;;
e2 <-- gen_exp_typed_sized size' Gamma TNat ;;
ret (Some (EMinus e1 e2)) )
; (size, e1 <-- gen_exp_typed_sized size' Gamma TNat ;;
e2 <-- gen_exp_typed_sized size' Gamma TNat ;;
ret (Some (EMult e1 e2)))]
| TBool ⇒
[ (size, e1 <-- gen_exp_typed_sized size' Gamma TNat ;;
e2 <-- gen_exp_typed_sized size' Gamma TNat ;;
ret (Some (EEq e1 e2)) )
; (size, e1 <-- gen_exp_typed_sized size' Gamma TNat ;;
e2 <-- gen_exp_typed_sized size' Gamma TNat ;;
ret (Some (ELe e1 e2)) )
; (size, e1 <-- gen_exp_typed_sized size' Gamma TBool ;;
ret (Some (ENot e1)))
; (size, e1 <-- gen_exp_typed_sized size' Gamma TBool ;;
e2 <-- gen_exp_typed_sized size' Gamma TBool ;;
ret (Some (EAnd e1 e2))) ]
end in
match size with
| O ⇒
backtrack base
| S size' ⇒
backtrack (base ++ recs size')
end.
When writing such complex generators, it's good to have some tests
to verify that we are generating what we expect. For example, here
we would expect gen_exp_typed_sized to always return expressions
that are well typed.
We can use forAll to encode such a property.
Definition gen_typed_has_type :=
let num_vars := 4 in
let top_level_size := 3 in
forAll (gen_context num_vars) (fun Gamma ⇒
forAll arbitrary (fun T ⇒
forAll (gen_exp_typed_sized top_level_size Gamma T) (fun me ⇒
match me with
| Some e ⇒ (has_type Gamma e T)?
| None ⇒ false
end))).
(* QuickChick gen_typed_has_type. *)
let num_vars := 4 in
let top_level_size := 3 in
forAll (gen_context num_vars) (fun Gamma ⇒
forAll arbitrary (fun T ⇒
forAll (gen_exp_typed_sized top_level_size Gamma T) (fun me ⇒
match me with
| Some e ⇒ (has_type Gamma e T)?
| None ⇒ false
end))).
(* QuickChick gen_typed_has_type. *)
Values and States
Values
We can also quickly define a typing relation for values, a Dec instance
for it, and a generator for values of a given type.
Inductive has_type_value : value → ty → Prop :=
| TyVNat : ∀ n, has_type_value (VNat n) TNat
| TyVBool : ∀ b, has_type_value (VBool b) TBool.
#[export] Instance dec_has_type_value v T : Dec (has_type_value v T).
Definition gen_typed_value (T : ty) : G value :=
match T with
| TNat ⇒ n <- arbitrary;; ret (VNat n)
| TBool ⇒ b <- arbitrary;; ret (VBool b)
end.
| TyVNat : ∀ n, has_type_value (VNat n) TNat
| TyVBool : ∀ b, has_type_value (VBool b) TBool.
#[export] Instance dec_has_type_value v T : Dec (has_type_value v T).
Definition gen_typed_value (T : ty) : G value :=
match T with
| TNat ⇒ n <- arbitrary;; ret (VNat n)
| TBool ⇒ b <- arbitrary;; ret (VBool b)
end.
We introduce an inductive relation that specifies when a state is
well typed in a context (that is, when all of its variables are
mapped to values of appropriate types).
We encode this in an element-by-element style inductive relation:
empty states are only well typed with respect to an empty context,
while non-empty states need to map their head identifier to a value of
the appropriate type (and their tail must similarly be well
typed).
Inductive well_typed_state : context → state → Prop :=
| TS_Empty : well_typed_state map_empty map_empty
| TS_Elem : ∀ x v T st Gamma,
has_type_value v T → well_typed_state Gamma st →
well_typed_state ((x,T)::Gamma) ((x,v)::st).
#[export] Instance dec_well_typed_state Gamma st : Dec (well_typed_state Gamma st).
Definition gen_well_typed_state (Gamma : context) : G state :=
sequenceGen (List.map (fun '(x, T) ⇒
v <- gen_typed_value T;;
ret (x, v)) Gamma).
| TS_Empty : well_typed_state map_empty map_empty
| TS_Elem : ∀ x v T st Gamma,
has_type_value v T → well_typed_state Gamma st →
well_typed_state ((x,T)::Gamma) ((x,v)::st).
#[export] Instance dec_well_typed_state Gamma st : Dec (well_typed_state Gamma st).
Proof.
constructor; unfold ssrbool.decidable.
generalize dependent Gamma.
induction st; intros; destruct Gamma; solve_sum.
destruct a as [a v]; destruct p as [a' T].
destruct (@dec (a = a') _ ); solve_sum.
subst; specialize (IHst Gamma); destruct IHst; solve_sum.
destruct (dec_has_type_value v T); destruct dec; solve_sum.
Defined.
constructor; unfold ssrbool.decidable.
generalize dependent Gamma.
induction st; intros; destruct Gamma; solve_sum.
destruct a as [a v]; destruct p as [a' T].
destruct (@dec (a = a') _ ); solve_sum.
subst; specialize (IHst Gamma); destruct IHst; solve_sum.
destruct (dec_has_type_value v T); destruct dec; solve_sum.
Defined.
Definition gen_well_typed_state (Gamma : context) : G state :=
sequenceGen (List.map (fun '(x, T) ⇒
v <- gen_typed_value T;;
ret (x, v)) Gamma).
Evaluation
Fixpoint eval (st : state) (e : exp) : option value :=
match e with
| EVar x ⇒ map_get st x
| ENum n ⇒ Some (VNat n)
| EPlus e1 e2 ⇒
match eval st e1, eval st e2 with
| Some (VNat n1), Some (VNat n2) ⇒ Some (VNat (n1 + n2))
| _, _ ⇒ None
end
| EMinus e1 e2 ⇒
match eval st e1, eval st e2 with
| Some (VNat n1), Some (VNat n2) ⇒ Some (VNat (n1 - n2))
| _, _ ⇒ None
end
| EMult e1 e2 ⇒
match eval st e1, eval st e2 with
| Some (VNat n1), Some (VNat n2) ⇒ Some (VNat (n1 × n2))
| _, _ ⇒ None
end
| ETrue ⇒ Some (VBool true )
| EFalse ⇒ Some (VBool false )
| EEq e1 e2 ⇒
match eval st e1, eval st e2 with
| Some (VNat n1), Some (VNat n2) ⇒ Some (VBool (n1 =? n2))
| _, _ ⇒ None
end
| ELe e1 e2 ⇒
match eval st e1, eval st e2 with
| Some (VNat n1), Some (VNat n2) ⇒ Some (VBool (n1 <? n2))
| _, _ ⇒ None
end
| ENot e ⇒
match eval st e with
| Some (VBool b) ⇒ Some (VBool (negb b))
| _ ⇒ None
end
| EAnd e1 e2 ⇒
match eval st e1, eval st e2 with
(* Let's include a silly bug here! *)
| Some (VBool b), Some (VNat n2) ⇒ Some (VBool (negb b))
(* | Some (VBool b1), Some (VBool b2) => Some (VBool (andb b1 b2)) *)
| _, _ ⇒ None
end
end.
match e with
| EVar x ⇒ map_get st x
| ENum n ⇒ Some (VNat n)
| EPlus e1 e2 ⇒
match eval st e1, eval st e2 with
| Some (VNat n1), Some (VNat n2) ⇒ Some (VNat (n1 + n2))
| _, _ ⇒ None
end
| EMinus e1 e2 ⇒
match eval st e1, eval st e2 with
| Some (VNat n1), Some (VNat n2) ⇒ Some (VNat (n1 - n2))
| _, _ ⇒ None
end
| EMult e1 e2 ⇒
match eval st e1, eval st e2 with
| Some (VNat n1), Some (VNat n2) ⇒ Some (VNat (n1 × n2))
| _, _ ⇒ None
end
| ETrue ⇒ Some (VBool true )
| EFalse ⇒ Some (VBool false )
| EEq e1 e2 ⇒
match eval st e1, eval st e2 with
| Some (VNat n1), Some (VNat n2) ⇒ Some (VBool (n1 =? n2))
| _, _ ⇒ None
end
| ELe e1 e2 ⇒
match eval st e1, eval st e2 with
| Some (VNat n1), Some (VNat n2) ⇒ Some (VBool (n1 <? n2))
| _, _ ⇒ None
end
| ENot e ⇒
match eval st e with
| Some (VBool b) ⇒ Some (VBool (negb b))
| _ ⇒ None
end
| EAnd e1 e2 ⇒
match eval st e1, eval st e2 with
(* Let's include a silly bug here! *)
| Some (VBool b), Some (VNat n2) ⇒ Some (VBool (negb b))
(* | Some (VBool b1), Some (VBool b2) => Some (VBool (andb b1 b2)) *)
| _, _ ⇒ None
end
end.
We will see in a later chapter (QuickChickTool) how we can
use QuickChick to introduce such mutations and have them
automatically checked.
Type soundness states that, if we have an expression e of a
given type T as well as a well-typed state st, then evaluating
e in st will never fail.
Definition isNone {A : Type} (m : option A) :=
match m with
| None ⇒ true
| Some _ ⇒ false
end.
Conjecture expression_soundness : ∀ Gamma st e T,
well_typed_state Gamma st → Gamma |⊢ e \IN T →
isNone (eval st e) = false.
match m with
| None ⇒ true
| Some _ ⇒ false
end.
Conjecture expression_soundness : ∀ Gamma st e T,
well_typed_state Gamma st → Gamma |⊢ e \IN T →
isNone (eval st e) = false.
To test this property, we construct an appropriate checker:
Definition expression_soundness_exec :=
let num_vars := 4 in
let top_level_size := 3 in
forAll (gen_context num_vars) (fun Gamma ⇒
forAll (gen_well_typed_state Gamma) (fun st ⇒
forAll arbitrary (fun T ⇒
forAll (gen_exp_typed_sized 3 Gamma T) (fun me ⇒
match me with
| Some e ⇒ negb (isNone (eval st e))
| _ ⇒ true
end)))).
(* QuickChick expression_soundness_exec. *)
let num_vars := 4 in
let top_level_size := 3 in
forAll (gen_context num_vars) (fun Gamma ⇒
forAll (gen_well_typed_state Gamma) (fun st ⇒
forAll arbitrary (fun T ⇒
forAll (gen_exp_typed_sized 3 Gamma T) (fun me ⇒
match me with
| Some e ⇒ negb (isNone (eval st e))
| _ ⇒ true
end)))).
(* QuickChick expression_soundness_exec. *)
===> QuickChecking expression_soundness_exec [(1,TNat), (2,TNat), (3,TBool), (4,TNat)] [(1,VNat 0), (2,VNat 0), (3,VBool true), (4,VNat 0)] TBool Some EAnd (EAnd (EEq (EVar 4) (EVar 1)) (EEq (ENum 0) (EVar 4))) EFalse *** Failed after 8 tests and 0 shrinks. (0 discards)Where is the bug?? Looks like we need some shrinking!
Shrinking for Expressions
Derive Shrink for exp.
Definition expression_soundness_exec_firstshrink :=
let num_vars := 4 in
let top_level_size := 3 in
forAll (gen_context num_vars) (fun Gamma ⇒
forAll (gen_well_typed_state Gamma) (fun st ⇒
forAll arbitrary (fun T ⇒
forAllShrink (gen_exp_typed_sized 3 Gamma T) shrink (fun me ⇒
match me with
| Some e ⇒ negb (isNone (eval st e))
| _ ⇒ true
end)))).
(* QuickChick expression_soundness_exec_firstshrink. *)
Definition expression_soundness_exec_firstshrink :=
let num_vars := 4 in
let top_level_size := 3 in
forAll (gen_context num_vars) (fun Gamma ⇒
forAll (gen_well_typed_state Gamma) (fun st ⇒
forAll arbitrary (fun T ⇒
forAllShrink (gen_exp_typed_sized 3 Gamma T) shrink (fun me ⇒
match me with
| Some e ⇒ negb (isNone (eval st e))
| _ ⇒ true
end)))).
(* QuickChick expression_soundness_exec_firstshrink. *)
===> QuickChecking expression_soundness_exec_firsttry [(1,TBool), (2,TNat), (3,TBool), (4,TBool)] [(1,VBool false), (2,VNat 0), (3,VBool true), (4,VBool false)] TBool Some EAnd (ENum 0) ETrue *** Failed after 28 tests and 7 shrinks. (0 discards)
- If e = ENum x for some x, all we can do is try to shrink x.
- If e = ETrue or e = EFalse, we could shrink it to the other. But remember, we don't want to do both, as this would lead to an infinite loop in shrinking! We choose to shrink EFalse to ETrue.
Definition shrink_base (e : exp) : list exp :=
match e with
| ENum n ⇒ map ENum (shrink n)
| ETrue ⇒ []
| EFalse ⇒ [ETrue]
| _ ⇒ []
end.
match e with
| ENum n ⇒ map ENum (shrink n)
| ETrue ⇒ []
| EFalse ⇒ [ETrue]
| _ ⇒ []
end.
The next case, EVar, must take the type T to be preserved into
account. To shrink an EVar we could try shrinking the inner
identifier, but shrinking an identifier by shrinking its natural
number representation makes little sense. Better, we can try to
shrink the EVar to a constant of the appropriate type.
Definition shrink_evar (T : ty) (e : exp) : list exp :=
match e with
| EVar x ⇒
match T with
| TNat ⇒ [ENum 0]
| TBool ⇒ [ETrue ; EFalse]
end
| _ ⇒ []
end.
match e with
| EVar x ⇒
match T with
| TNat ⇒ [ENum 0]
| TBool ⇒ [ETrue ; EFalse]
end
| _ ⇒ []
end.
Finally, we need to be able to shrink the recursive cases. Consider
EPlus e1 e2:
On the other hand, consider EEq e1 e2:
- We could try (recursively) shrinking e1 or e2 preserving their TNat type.
- We could try to shrink directly to e1 or e2 since their type is the same as EPlus e1 e2.
- Again, we could recursively shrink e1 or e2.
- But we can't shrink to e1 or e2 since they are of a different type.
- For faster shrinking, we can also try to shrink such expressions to boolean constants directly.
Fixpoint shrink_rec (T : ty) (e : exp) : list exp :=
match e with
| EPlus e1 e2 ⇒
e1 :: e2
:: (List.map (fun e1' ⇒ EPlus e1' e2) (shrink_rec T e1))
++ (List.map (fun e2' ⇒ EPlus e1 e2') (shrink_rec T e2))
| EEq e1 e2 ⇒
ETrue :: EFalse
:: (List.map (fun e1' ⇒ EEq e1' e2) (shrink_rec TNat e1))
++ (List.map (fun e2' ⇒ EEq e1 e2') (shrink_rec TNat e2))
| _ ⇒ []
end.
match e with
| EPlus e1 e2 ⇒
e1 :: e2
:: (List.map (fun e1' ⇒ EPlus e1' e2) (shrink_rec T e1))
++ (List.map (fun e2' ⇒ EPlus e1 e2') (shrink_rec T e2))
| EEq e1 e2 ⇒
ETrue :: EFalse
:: (List.map (fun e1' ⇒ EEq e1' e2) (shrink_rec TNat e1))
++ (List.map (fun e2' ⇒ EEq e1 e2') (shrink_rec TNat e2))
| _ ⇒ []
end.
Putting it all together yields the following smart shrinker:
Fixpoint shrink_exp_typed (T : ty) (e : exp) : list exp :=
match e with
| EVar _ ⇒
match T with
| TNat ⇒ [ENum 0]
| TBool ⇒ [ETrue ; EFalse]
end
| ENum _ ⇒ []
| ETrue ⇒ []
| EFalse ⇒ [ETrue]
| EPlus e1 e2 ⇒
e1 :: e2
:: (List.map (fun e1' ⇒ EPlus e1' e2) (shrink_exp_typed T e1))
++ (List.map (fun e2' ⇒ EPlus e1 e2') (shrink_exp_typed T e2))
| EMinus e1 e2 ⇒
e1 :: e2 :: (EPlus e1 e2)
:: (List.map (fun e1' ⇒ EMinus e1' e2) (shrink_exp_typed T e1))
++ (List.map (fun e2' ⇒ EMinus e1 e2') (shrink_exp_typed T e2))
| EMult e1 e2 ⇒
e1 :: e2 :: (EPlus e1 e2)
:: (List.map (fun e1' ⇒ EMult e1' e2) (shrink_exp_typed T e1))
++ (List.map (fun e2' ⇒ EMult e1 e2') (shrink_exp_typed T e2))
| EEq e1 e2 ⇒
ETrue :: EFalse
:: (List.map (fun e1' ⇒ EEq e1' e2) (shrink_exp_typed TNat e1))
++ (List.map (fun e2' ⇒ EEq e1 e2') (shrink_exp_typed TNat e2))
| ELe e1 e2 ⇒
ETrue :: EFalse :: (EEq e1 e2)
:: (List.map (fun e1' ⇒ ELe e1' e2) (shrink_exp_typed TNat e1))
++ (List.map (fun e2' ⇒ ELe e1 e2') (shrink_exp_typed TNat e2))
| ENot e ⇒
ETrue :: EFalse :: e :: (List.map ENot (shrink_exp_typed T e))
| EAnd e1 e2 ⇒
ETrue :: EFalse :: e1 :: e2
:: (List.map (fun e1' ⇒ EAnd e1' e2) (shrink_exp_typed TBool e1))
++ (List.map (fun e2' ⇒ EAnd e1 e2') (shrink_exp_typed TBool e2))
end.
match e with
| EVar _ ⇒
match T with
| TNat ⇒ [ENum 0]
| TBool ⇒ [ETrue ; EFalse]
end
| ENum _ ⇒ []
| ETrue ⇒ []
| EFalse ⇒ [ETrue]
| EPlus e1 e2 ⇒
e1 :: e2
:: (List.map (fun e1' ⇒ EPlus e1' e2) (shrink_exp_typed T e1))
++ (List.map (fun e2' ⇒ EPlus e1 e2') (shrink_exp_typed T e2))
| EMinus e1 e2 ⇒
e1 :: e2 :: (EPlus e1 e2)
:: (List.map (fun e1' ⇒ EMinus e1' e2) (shrink_exp_typed T e1))
++ (List.map (fun e2' ⇒ EMinus e1 e2') (shrink_exp_typed T e2))
| EMult e1 e2 ⇒
e1 :: e2 :: (EPlus e1 e2)
:: (List.map (fun e1' ⇒ EMult e1' e2) (shrink_exp_typed T e1))
++ (List.map (fun e2' ⇒ EMult e1 e2') (shrink_exp_typed T e2))
| EEq e1 e2 ⇒
ETrue :: EFalse
:: (List.map (fun e1' ⇒ EEq e1' e2) (shrink_exp_typed TNat e1))
++ (List.map (fun e2' ⇒ EEq e1 e2') (shrink_exp_typed TNat e2))
| ELe e1 e2 ⇒
ETrue :: EFalse :: (EEq e1 e2)
:: (List.map (fun e1' ⇒ ELe e1' e2) (shrink_exp_typed TNat e1))
++ (List.map (fun e2' ⇒ ELe e1 e2') (shrink_exp_typed TNat e2))
| ENot e ⇒
ETrue :: EFalse :: e :: (List.map ENot (shrink_exp_typed T e))
| EAnd e1 e2 ⇒
ETrue :: EFalse :: e1 :: e2
:: (List.map (fun e1' ⇒ EAnd e1' e2) (shrink_exp_typed TBool e1))
++ (List.map (fun e2' ⇒ EAnd e1 e2') (shrink_exp_typed TBool e2))
end.
As we saw for generators, we can also perform sanity checks on our
shrinkers. Here, when the shrinker is applied to an expression of
a given type, all of its results should have the same type.
Definition shrink_typed_has_type :=
let num_vars := 4 in
let top_level_size := 3 in
forAll (gen_context num_vars) (fun Gamma ⇒
forAll arbitrary (fun T ⇒
forAll (gen_exp_typed_sized top_level_size Gamma T) (fun me ⇒
match me with
| Some e ⇒
List.forallb (fun e' ⇒ (has_type Gamma e' T)?) (shrink_exp_typed T e)
| _ ⇒ false
end))).
(* QuickChick shrink_typed_has_type. *)
let num_vars := 4 in
let top_level_size := 3 in
forAll (gen_context num_vars) (fun Gamma ⇒
forAll arbitrary (fun T ⇒
forAll (gen_exp_typed_sized top_level_size Gamma T) (fun me ⇒
match me with
| Some e ⇒
List.forallb (fun e' ⇒ (has_type Gamma e' T)?) (shrink_exp_typed T e)
| _ ⇒ false
end))).
(* QuickChick shrink_typed_has_type. *)
Back to Soundness
To lift the shrinker to optional expressions, QuickChick provides the following function.
Definition lift_shrink {A}
(shr : A → list A) (m : option A)
: list (option A) :=
match m with
| Some x ⇒ List.map Some (shr x)
| _ ⇒ []
end.
(shr : A → list A) (m : option A)
: list (option A) :=
match m with
| Some x ⇒ List.map Some (shr x)
| _ ⇒ []
end.
Armed with shrinking, we can pinpoint the bug in the EAnd branch
of the evaluator.
Definition expression_soundness_exec' :=
let num_vars := 4 in
let top_level_size := 3 in
forAll (gen_context num_vars) (fun Gamma ⇒
forAll (gen_well_typed_state Gamma) (fun st ⇒
forAll arbitrary (fun T ⇒
forAllShrink (gen_exp_typed_sized 3 Gamma T)
(lift_shrink (shrink_exp_typed T))
(fun me ⇒
match me with
| Some e ⇒ negb (isNone (eval st e))
| _ ⇒ true
end)))).
(* QuickChick expression_soundness_exec'. *)
let num_vars := 4 in
let top_level_size := 3 in
forAll (gen_context num_vars) (fun Gamma ⇒
forAll (gen_well_typed_state Gamma) (fun st ⇒
forAll arbitrary (fun T ⇒
forAllShrink (gen_exp_typed_sized 3 Gamma T)
(lift_shrink (shrink_exp_typed T))
(fun me ⇒
match me with
| Some e ⇒ negb (isNone (eval st e))
| _ ⇒ true
end)))).
(* QuickChick expression_soundness_exec'. *)
===> QuickChecking expression_soundness_exec' [(1,TNat), (2,TNat), (3,TNat), (4,TBool)] [(1,VNat 0), (2,VNat 0), (3,VNat 0), (4,VBool false)] TBool Some EAnd ETrue ETrue *** Failed after 8 tests and 1 shrinks. (0 discards)
Well-Typed Programs
Inductive com : Type :=
| CSkip : com
| CAsgn : id → exp → com
| CSeq : com → com → com
| CIf : exp → com → com → com
| CWhile : exp → com → com.
Notation "'SKIP'" :=
CSkip.
Notation "x '::=' a" :=
(CAsgn x a) (at level 60).
Notation "c1 ;;; c2" :=
(CSeq c1 c2) (at level 80, right associativity).
Notation "'WHILE' b 'DO' c 'END'" :=
(CWhile b c) (at level 80, right associativity).
Notation "'TEST' c1 'THEN' c2 'ELSE' c3 'FI'" :=
(CIf c1 c2 c3) (at level 80, right associativity).
Derive Show for com.
| CSkip : com
| CAsgn : id → exp → com
| CSeq : com → com → com
| CIf : exp → com → com → com
| CWhile : exp → com → com.
Notation "'SKIP'" :=
CSkip.
Notation "x '::=' a" :=
(CAsgn x a) (at level 60).
Notation "c1 ;;; c2" :=
(CSeq c1 c2) (at level 80, right associativity).
Notation "'WHILE' b 'DO' c 'END'" :=
(CWhile b c) (at level 80, right associativity).
Notation "'TEST' c1 'THEN' c2 'ELSE' c3 'FI'" :=
(CIf c1 c2 c3) (at level 80, right associativity).
Derive Show for com.
(Of course, the derived Show instance is not going to use these
notations!)
We can now define what it means for a command to be well typed
for a given context. The interesting cases are TAsgn and TIf/TWhile.
The first one, ensures that the type of the variable we are
assigning to is the same as that of the expression. The latter,
requires that the conditional is indeed a boolean expression.
Inductive well_typed_com : context → com → Prop :=
| TSkip : ∀ Gamma, well_typed_com Gamma CSkip
| TAsgn : ∀ Gamma x e T,
bound_to Gamma x T →
Gamma |⊢ e \IN T →
well_typed_com Gamma (CAsgn x e)
| TSeq : ∀ Gamma c1 c2,
well_typed_com Gamma c1 → well_typed_com Gamma c2 →
well_typed_com Gamma (CSeq c1 c2)
| TIf : ∀ Gamma b c1 c2,
Gamma |⊢ b \IN TBool →
well_typed_com Gamma c1 → well_typed_com Gamma c2 →
well_typed_com Gamma (CIf b c1 c2)
| TWhile : ∀ Gamma b c,
Gamma |⊢ b \IN TBool → well_typed_com Gamma c →
well_typed_com Gamma (CWhile b c).
| TSkip : ∀ Gamma, well_typed_com Gamma CSkip
| TAsgn : ∀ Gamma x e T,
bound_to Gamma x T →
Gamma |⊢ e \IN T →
well_typed_com Gamma (CAsgn x e)
| TSeq : ∀ Gamma c1 c2,
well_typed_com Gamma c1 → well_typed_com Gamma c2 →
well_typed_com Gamma (CSeq c1 c2)
| TIf : ∀ Gamma b c1 c2,
Gamma |⊢ b \IN TBool →
well_typed_com Gamma c1 → well_typed_com Gamma c2 →
well_typed_com Gamma (CIf b c1 c2)
| TWhile : ∀ Gamma b c,
Gamma |⊢ b \IN TBool → well_typed_com Gamma c →
well_typed_com Gamma (CWhile b c).
Decidable instance for well-typed.
Lemma bind_deterministic Gamma x (T1 T2 : ty) :
bound_to Gamma x T1 → bound_to Gamma x T2 →
T1 = T2.
Lemma has_type_deterministic Gamma e (T1 T2 : ty) :
has_type e Gamma T1 → has_type e Gamma T2 →
T1 = T2.
Ltac solve_det :=
match goal with
| [ H1 : bound_to _ _ ?T1 ,
H2 : bound_to _ _ ?T2 ⊢ _ ] ⇒
assert (T1 = T2) by (eapply bind_deterministic; eauto)
| [ H1 : has_type _ _ ?T1 ,
H2 : has_type _ _ ?T2 ⊢ _ ] ⇒
assert (T1 = T2) by (eapply bind_deterministic; eauto)
end.
bound_to Gamma x T1 → bound_to Gamma x T2 →
T1 = T2.
Proof.
destruct T1; destruct T2; intros H1 H2; eauto;
inversion H1; inversion H2; congruence.
Qed.
destruct T1; destruct T2; intros H1 H2; eauto;
inversion H1; inversion H2; congruence.
Qed.
Lemma has_type_deterministic Gamma e (T1 T2 : ty) :
has_type e Gamma T1 → has_type e Gamma T2 →
T1 = T2.
Proof.
destruct T1; destruct T2; intros H1 H2; eauto;
inversion H1; inversion H2; subst; eauto; try congruence;
inversion H7; subst;
eapply bind_deterministic; eauto.
Qed.
destruct T1; destruct T2; intros H1 H2; eauto;
inversion H1; inversion H2; subst; eauto; try congruence;
inversion H7; subst;
eapply bind_deterministic; eauto.
Qed.
Ltac solve_det :=
match goal with
| [ H1 : bound_to _ _ ?T1 ,
H2 : bound_to _ _ ?T2 ⊢ _ ] ⇒
assert (T1 = T2) by (eapply bind_deterministic; eauto)
| [ H1 : has_type _ _ ?T1 ,
H2 : has_type _ _ ?T2 ⊢ _ ] ⇒
assert (T1 = T2) by (eapply bind_deterministic; eauto)
end.
Now, here is a brute-force decision procedure for the typing
relation (which amounts to a simple typechecker).
#[export] Instance dec_well_typed_com (Gamma : context) (c : com)
: Dec (well_typed_com Gamma c).
: Dec (well_typed_com Gamma c).
Proof with eauto.
constructor. unfold ssrbool.decidable.
induction c; solve_sum.
- destruct (dec_bound_to Gamma i TNat); destruct dec;
destruct (dec_has_type e Gamma TNat); destruct dec;
destruct (dec_bound_to Gamma i TBool); destruct dec;
destruct (dec_has_type e Gamma TBool); destruct dec; solve_sum;
try solve_det; try congruence;
right; intro Contra; inversion Contra; subst; clear Contra;
try solve_det; try congruence;
destruct T; eauto.
- destruct IHc1; destruct IHc2; subst; eauto; solve_sum.
- destruct IHc1; destruct IHc2; subst; eauto; solve_sum.
destruct (dec_has_type e Gamma TBool); destruct dec; solve_sum.
- destruct IHc;
destruct (dec_has_type e Gamma TBool); destruct dec; solve_sum.
Qed.
constructor. unfold ssrbool.decidable.
induction c; solve_sum.
- destruct (dec_bound_to Gamma i TNat); destruct dec;
destruct (dec_has_type e Gamma TNat); destruct dec;
destruct (dec_bound_to Gamma i TBool); destruct dec;
destruct (dec_has_type e Gamma TBool); destruct dec; solve_sum;
try solve_det; try congruence;
right; intro Contra; inversion Contra; subst; clear Contra;
try solve_det; try congruence;
destruct T; eauto.
- destruct IHc1; destruct IHc2; subst; eauto; solve_sum.
- destruct IHc1; destruct IHc2; subst; eauto; solve_sum.
destruct (dec_has_type e Gamma TBool); destruct dec; solve_sum.
- destruct IHc;
destruct (dec_has_type e Gamma TBool); destruct dec; solve_sum.
Qed.
Exercise: 4 stars, standard (arbitrary_well_typed_com)
Write a generator and a shrinker for well_typed programs given some context Gamma. Write some appropriate sanity checks and make sure they give expected results.
(* FILL IN HERE *)
☐
☐
Inductive result :=
| Success : state → result
| Fail : result
| OutOfGas : result.
Fixpoint ceval (fuel : nat) (st : state) (c : com) : result :=
match fuel with
| O ⇒ OutOfGas
| S fuel' ⇒
match c with
| SKIP ⇒
Success st
| x ::= e ⇒
match eval st e with
| Some v ⇒ Success (map_set st x v)
| _ ⇒ Fail
end
| c1 ;;; c2 ⇒
match ceval fuel' st c1 with
| Success st' ⇒ ceval fuel' st' c2
| _ ⇒ Fail
end
| TEST b THEN c1 ELSE c2 FI ⇒
match eval st b with
| Some (VBool b) ⇒
ceval fuel' st (if b then c1 else c2)
| _ ⇒ Fail
end
| WHILE b DO c END ⇒
match eval st b with
| Some (VBool b') ⇒
if b'
then ceval fuel' st (c ;;; WHILE b DO c END)
else Success st
| _ ⇒ Fail
end
end
end.
Definition isFail r :=
match r with
| Fail ⇒ true
| _ ⇒ false
end.
| Success : state → result
| Fail : result
| OutOfGas : result.
Fixpoint ceval (fuel : nat) (st : state) (c : com) : result :=
match fuel with
| O ⇒ OutOfGas
| S fuel' ⇒
match c with
| SKIP ⇒
Success st
| x ::= e ⇒
match eval st e with
| Some v ⇒ Success (map_set st x v)
| _ ⇒ Fail
end
| c1 ;;; c2 ⇒
match ceval fuel' st c1 with
| Success st' ⇒ ceval fuel' st' c2
| _ ⇒ Fail
end
| TEST b THEN c1 ELSE c2 FI ⇒
match eval st b with
| Some (VBool b) ⇒
ceval fuel' st (if b then c1 else c2)
| _ ⇒ Fail
end
| WHILE b DO c END ⇒
match eval st b with
| Some (VBool b') ⇒
if b'
then ceval fuel' st (c ;;; WHILE b DO c END)
else Success st
| _ ⇒ Fail
end
end
end.
Definition isFail r :=
match r with
| Fail ⇒ true
| _ ⇒ false
end.
Type soundness: well-typed commands never fail.
Conjecture well_typed_state_never_stuck :
∀ Gamma st, well_typed_state Gamma st →
∀ c, well_typed_com Gamma c →
∀ fuel, isFail (ceval fuel st c) = false.
∀ Gamma st, well_typed_state Gamma st →
∀ c, well_typed_com Gamma c →
∀ fuel, isFail (ceval fuel st c) = false.
Exercise: 4 stars, standard (well_typed_state_never_stuck)
Write a checker for the above property, find any bugs, and fix them.
(* FILL IN HERE *)
Exercise: 4 stars, standard (ty_eq_polymorphic)
In the has_type relation we allowed equality checks between only arithmetic expressions. Introduce an additional typing rule that allows for equality checks between booleans.| Ty_Eq : ∀ Gamma e1 e2,
Gamma |⊢ e1 \IN TBool → Gamma |⊢ e2 \IN TBool →
Gamma |⊢ EEq e1 e2 \IN TBool Make sure you also update the evaluation relation to compare boolean values. Update the generators and shrinkers accordingly to find counterexamples to the buggy properties above.
Automation (Revisited)
Inductive has_type_value : value → ty → Prop :=
| TyVNat : ∀ n, has_type_value (VNat n) TNat
| TyVBool : ∀ b, has_type_value (VBool b) TBool.
Definition gen_typed_value (T : ty) : G value :=
match T with
| TNat ⇒ n <- arbitrary;; ret (VNat n)
| TBool ⇒ b <- arbitrary;; ret (VBool b)
end. QuickChick includes a derivation mechanism that can automatically produce such generators -- i.e., generators for data structures satisfying inductively defined properties!
Derive ArbitrarySizedSuchThat for (fun v ⇒ has_type_value v T).
===>
GenSizedSuchThathas_type_value is defined.
Let's take a closer look at what is being generated (after
doing some renaming and reformatting).
===> GenSizedSuchThathas_type_value = fun T : ty => {| arbitrarySizeST := let fix aux_arb (size0 : nat) (T : ty) {struct size0} : G (option value) := match size0 with | 0 => backtrack [(1, match T with | TBool => ret None | TNat => n <- arbitrary;; ret (Some (VNat n)) end) ;(1, match T with | TBool => b <- arbitrary;; ret (Some (VBool b))) | TNat => ret None end)] | S _ => backtrack [(1, match T with | TBool => ret None | TNat => n <- arbitrary;; ret (Some (VNat n)) end) ;(1, match T with | TBool => b <- arbitrary;; ret (Some (VBool b))) | TNat => ret None end)] end in fun size0 : nat => aux_arb size0 T |} : forall T : ty, GenSizedSuchThat value (fun v => has_type_value v T)
Derive DecOpt for (has_type_value v T).
Print DecOpthas_type_value.
(* For more information as to how that's possible, look at the PLDI
'22 paper Computing Correctly with Inductive Relations *)
Print DecOpthas_type_value.
(* For more information as to how that's possible, look at the PLDI
'22 paper Computing Correctly with Inductive Relations *)
(More) Typeclasses for Generation
A variant that takes a size,...
...an unsized variant,...
...convenient notation,...
(*
Notation "'genST' x" := (@arbitraryST _ x _) (at level 70).
*)
Notation "'genST' x" := (@arbitraryST _ x _) (at level 70).
*)
...and a coercion between the two:
#[export] Instance GenSuchThatOfBounded (A : Type) (P : A → Prop)
(H : GenSizedSuchThat A P)
: GenSuchThat A P :=
{ arbitraryST := sized arbitrarySizeST }.
End GenSTPlayground.
(H : GenSizedSuchThat A P)
: GenSuchThat A P :=
{ arbitraryST := sized arbitrarySizeST }.
End GenSTPlayground.
Using "SuchThat" Typeclasses
Conjecture conditional_prop_example :
∀ (x y : nat), x = y → x = y.
(* QuickChick conditional_prop_example. *)
∀ (x y : nat), x = y → x = y.
(* QuickChick conditional_prop_example. *)
==> QuickChecking conditional_prop_example +++ Passed 10000 tests (0 discards)
Acknowledgements
(* 2024-11-04 20:44 *)