RedblackRed-Black Trees
- Red-Black Trees in a Functional Setting, by Chris Okasaki.
Journal of Functional Programming, 9(4):471-477, July 1999.
Available from https://doi.org/10.1017/S0956796899003494.
Archived at
http://www.eecs.usma.edu/webs/people/okasaki/jfp99.ps">class="inlineref" https://web.archive.org/web/20070926220746/http://www.eecs.usma.edu/webs/people/okasaki/jfp99.ps.
- Purely Functional Data Structures, by Chris Okasaki. Section 3.3. Cambridge University Press, 1998.
- Efficient Verified Red-Black Trees, by Andrew W. Appel, September 2011. Available from http://www.cs.princeton.edu/~appel/papers/redblack.pdf.
Definition key := int.
Inductive color := Red | Black.
Inductive tree (V : Type) : Type :=
| E : tree V
| T : color → tree V → key → V → tree V → tree V.
Arguments E {V}.
Arguments T {V}.
Definition empty_tree (V : Type) : tree V :=
E.
Inductive color := Red | Black.
Inductive tree (V : Type) : Type :=
| E : tree V
| T : color → tree V → key → V → tree V → tree V.
Arguments E {V}.
Arguments T {V}.
Definition empty_tree (V : Type) : tree V :=
E.
The lookup implementation for red-black trees is exactly
the same as the lookup for BSTs, except that the T constructor
carries a color component that is ignored.
Fixpoint lookup {V : Type} (d : V) (x: key) (t : tree V) : V :=
match t with
| E ⇒ d
| T _ tl k v tr ⇒ if ltb x k then lookup d x tl
else if ltb k x then lookup d x tr
else v
end.
match t with
| E ⇒ d
| T _ tl k v tr ⇒ if ltb x k then lookup d x tl
else if ltb k x then lookup d x tr
else v
end.
We won't explain the insert algorithm here; read Okasaki's
work if you want to understand it. In fact, you'll need very
little understanding of it to follow along with the verification
below. It uses balance and ins as helpers:
- ins recurses down the tree to find where to insert, and is
mostly the same as the BST insert algorithm.
- balance takes care of rebalancing the tree on the way back up.
Definition balance
{V : Type} (c : color) (t1 : tree V) (k : key) (vk : V)
(t2 : tree V) : tree V :=
match c with
| Red ⇒ T Red t1 k vk t2
| _ ⇒ match t1 with
| T Red (T Red a x vx b) y vy c ⇒
T Red (T Black a x vx b) y vy (T Black c k vk t2)
| T Red a x vx (T Red b y vy c) ⇒
T Red (T Black a x vx b) y vy (T Black c k vk t2)
| _ ⇒ match t2 with
| T Red (T Red b y vy c) z vz d ⇒
T Red (T Black t1 k vk b) y vy (T Black c z vz d)
| T Red b y vy (T Red c z vz d) ⇒
T Red (T Black t1 k vk b) y vy (T Black c z vz d)
| _ ⇒ T Black t1 k vk t2
end
end
end.
Fixpoint ins {V : Type} (x : key) (vx : V) (t : tree V) : tree V :=
match t with
| E ⇒ T Red E x vx E
| T c a y vy b ⇒ if ltb x y then balance c (ins x vx a) y vy b
else if ltb y x then balance c a y vy (ins x vx b)
else T c a x vx b
end.
Definition make_black {V : Type} (t : tree V) : tree V :=
match t with
| E ⇒ E
| T _ a x vx b ⇒ T Black a x vx b
end.
Definition insert {V : Type} (x : key) (vx : V) (t : tree V) :=
make_black (ins x vx t).
{V : Type} (c : color) (t1 : tree V) (k : key) (vk : V)
(t2 : tree V) : tree V :=
match c with
| Red ⇒ T Red t1 k vk t2
| _ ⇒ match t1 with
| T Red (T Red a x vx b) y vy c ⇒
T Red (T Black a x vx b) y vy (T Black c k vk t2)
| T Red a x vx (T Red b y vy c) ⇒
T Red (T Black a x vx b) y vy (T Black c k vk t2)
| _ ⇒ match t2 with
| T Red (T Red b y vy c) z vz d ⇒
T Red (T Black t1 k vk b) y vy (T Black c z vz d)
| T Red b y vy (T Red c z vz d) ⇒
T Red (T Black t1 k vk b) y vy (T Black c z vz d)
| _ ⇒ T Black t1 k vk t2
end
end
end.
Fixpoint ins {V : Type} (x : key) (vx : V) (t : tree V) : tree V :=
match t with
| E ⇒ T Red E x vx E
| T c a y vy b ⇒ if ltb x y then balance c (ins x vx a) y vy b
else if ltb y x then balance c a y vy (ins x vx b)
else T c a x vx b
end.
Definition make_black {V : Type} (t : tree V) : tree V :=
match t with
| E ⇒ E
| T _ a x vx b ⇒ T Black a x vx b
end.
Definition insert {V : Type} (x : key) (vx : V) (t : tree V) :=
make_black (ins x vx t).
The elements implementation is the same as for BSTs,
except that it ignores colors.
Fixpoint elements_aux {V : Type} (t : tree V) (acc: list (key × V))
: list (key × V) :=
match t with
| E ⇒ acc
| T _ l k v r ⇒ elements_aux l ((k, v) :: elements_aux r acc)
end.
Definition elements {V : Type} (t : tree V) : list (key × V) :=
elements_aux t [].
: list (key × V) :=
match t with
| E ⇒ acc
| T _ l k v r ⇒ elements_aux l ((k, v) :: elements_aux r acc)
end.
Definition elements {V : Type} (t : tree V) : list (key × V) :=
elements_aux t [].
Sedgewick has proposed left-leaning red-black trees, which
have a simpler balance function but a more complicated
representation invariant. He does this in order to make the proof
of correctness easier: there are fewer cases in the balance
function, and therefore fewer cases in the case-analysis of the
proof of correctness of balance. But as you will see, our proofs
about balance will have automated case analyses, so we don't
care how many cases there are!
Case-Analysis Automation
Lemma ins_not_E : ∀ (V : Type) (x : key) (vx : V) (t : tree V),
ins x vx t ≠ E.
Proof.
intros. destruct t; simpl.
discriminate.
(* Let's destruct on the topmost case, ltb x k. We can use
destruct instead of bdestruct because we don't need to know
whether x < k or x ≥ k. *)
destruct (ltb x k).
unfold balance.
(* A huge goal! The proof of this goal begins by matching
against a color. *)
destruct c.
discriminate.
(* Another match, this time against a tree. *)
destruct (ins x vx t1).
(* Another match against a tree. *)
destruct t2.
discriminate.
(* Yet another match. This pattern deserves automation. The
following tactic applies destruct whenever the current goal is
a match against a color or a tree. *)
match goal with
| ⊢ match ?c with Red ⇒ _ | Black ⇒ _ end ≠ _ ⇒ destruct c
| ⊢ match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end ≠ _⇒ destruct t
end.
(* Let's apply that tactic repeatedly. *)
repeat
match goal with
| ⊢ match ?c with Red ⇒ _ | Black ⇒ _ end ≠ _ ⇒ destruct c
| ⊢ match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end ≠ _⇒ destruct t
end.
(* Now we're down to a base case. *)
discriminate.
(* And another base case. We could match against those, too. *)
match goal with
| ⊢ T _ _ _ _ _ ≠ E ⇒ discriminate
end.
(* Let's restart the proof to incorporate this automation. *)
Abort.
Lemma ins_not_E : ∀ (V : Type) (x : key) (vx : V) (t : tree V),
ins x vx t ≠ E.
Proof.
intros. destruct t; simpl.
- discriminate.
- unfold balance.
repeat
match goal with
| ⊢ (if ?x then _ else _) ≠ _ ⇒ destruct x
| ⊢ match ?c with Red ⇒ _ | Black ⇒ _ end ≠ _⇒ destruct c
| ⊢ match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end ≠ _⇒ destruct t
| ⊢ T _ _ _ _ _ ≠ E ⇒ discriminate
end.
Qed.
ins x vx t ≠ E.
Proof.
intros. destruct t; simpl.
discriminate.
(* Let's destruct on the topmost case, ltb x k. We can use
destruct instead of bdestruct because we don't need to know
whether x < k or x ≥ k. *)
destruct (ltb x k).
unfold balance.
(* A huge goal! The proof of this goal begins by matching
against a color. *)
destruct c.
discriminate.
(* Another match, this time against a tree. *)
destruct (ins x vx t1).
(* Another match against a tree. *)
destruct t2.
discriminate.
(* Yet another match. This pattern deserves automation. The
following tactic applies destruct whenever the current goal is
a match against a color or a tree. *)
match goal with
| ⊢ match ?c with Red ⇒ _ | Black ⇒ _ end ≠ _ ⇒ destruct c
| ⊢ match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end ≠ _⇒ destruct t
end.
(* Let's apply that tactic repeatedly. *)
repeat
match goal with
| ⊢ match ?c with Red ⇒ _ | Black ⇒ _ end ≠ _ ⇒ destruct c
| ⊢ match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end ≠ _⇒ destruct t
end.
(* Now we're down to a base case. *)
discriminate.
(* And another base case. We could match against those, too. *)
match goal with
| ⊢ T _ _ _ _ _ ≠ E ⇒ discriminate
end.
(* Let's restart the proof to incorporate this automation. *)
Abort.
Lemma ins_not_E : ∀ (V : Type) (x : key) (vx : V) (t : tree V),
ins x vx t ≠ E.
Proof.
intros. destruct t; simpl.
- discriminate.
- unfold balance.
repeat
match goal with
| ⊢ (if ?x then _ else _) ≠ _ ⇒ destruct x
| ⊢ match ?c with Red ⇒ _ | Black ⇒ _ end ≠ _⇒ destruct c
| ⊢ match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end ≠ _⇒ destruct t
| ⊢ T _ _ _ _ _ ≠ E ⇒ discriminate
end.
Qed.
This automation of case analysis will be quite useful in the
rest of our development.
The BST Invariant
Fixpoint ForallT {V : Type} (P: int → V → Prop) (t : tree V) : Prop :=
match t with
| E ⇒ True
| T c l k v r ⇒ P k v ∧ ForallT P l ∧ ForallT P r
end.
Inductive BST {V : Type} : tree V → Prop :=
| ST_E : BST E
| ST_T : ∀ (c : color) (l : tree V) (k : key) (v : V) (r : tree V),
ForallT (fun k' _ ⇒ (Abs k') < (Abs k)) l →
ForallT (fun k' _ ⇒ (Abs k') > (Abs k)) r →
BST l →
BST r →
BST (T c l k v r).
Lemma empty_tree_BST : ∀ (V : Type), BST (@empty_tree V).
Proof.
unfold empty_tree. constructor.
Qed.
match t with
| E ⇒ True
| T c l k v r ⇒ P k v ∧ ForallT P l ∧ ForallT P r
end.
Inductive BST {V : Type} : tree V → Prop :=
| ST_E : BST E
| ST_T : ∀ (c : color) (l : tree V) (k : key) (v : V) (r : tree V),
ForallT (fun k' _ ⇒ (Abs k') < (Abs k)) l →
ForallT (fun k' _ ⇒ (Abs k') > (Abs k)) r →
BST l →
BST r →
BST (T c l k v r).
Lemma empty_tree_BST : ∀ (V : Type), BST (@empty_tree V).
Proof.
unfold empty_tree. constructor.
Qed.
Let's show that insert preserves the BST invariant, that is:
Theorem insert_BST : ∀ (V : Type) (t : tree V) (v : V) (k : key),
BST t →
BST (insert k v t).
Abort.
BST t →
BST (insert k v t).
Abort.
It will take quite a bit of work, but automation will help.
First, we show that if a non-empty tree would be a BST, then the
balanced version of it is also a BST:
Lemma balance_BST: ∀ (V : Type) (c : color) (l : tree V) (k : key)
(v : V) (r : tree V),
ForallT (fun k' _ ⇒ (Abs k') < (Abs k)) l →
ForallT (fun k' _ ⇒ (Abs k') > (Abs k)) r →
BST l →
BST r →
BST (balance c l k v r).
Proof.
intros V c l k v r PL PR BL BR. unfold balance.
repeat
match goal with
| ⊢ BST (match ?c with Red ⇒ _ | Black ⇒ _ end) ⇒ destruct c
| ⊢ BST (match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end) ⇒ destruct t
end.
(* 58 cases remaining. *)
- constructor. assumption. assumption. assumption. assumption.
- constructor; auto.
- constructor; auto.
- (* Now the tree gets bigger, and the proof gets more complicated. *)
constructor; auto.
+ simpl in ×. repeat split.
(* The intro pattern ? means to let Coq choose the name. *)
destruct PR as [? _]. lia.
+ simpl in ×. repeat split.
× inv BR. simpl in ×. destruct H5 as [? _]. lia.
× inv BR. simpl in ×. destruct H5 as [_ [? _]]. auto.
× inv BR. simpl in ×. destruct H5 as [_ [_ ?]]. auto.
+ constructor; auto.
+ inv BR. inv H7. constructor; auto.
- constructor; auto.
- (* 53 cases remain. This could go on for a while... *)
Abort.
(v : V) (r : tree V),
ForallT (fun k' _ ⇒ (Abs k') < (Abs k)) l →
ForallT (fun k' _ ⇒ (Abs k') > (Abs k)) r →
BST l →
BST r →
BST (balance c l k v r).
Proof.
intros V c l k v r PL PR BL BR. unfold balance.
repeat
match goal with
| ⊢ BST (match ?c with Red ⇒ _ | Black ⇒ _ end) ⇒ destruct c
| ⊢ BST (match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end) ⇒ destruct t
end.
(* 58 cases remaining. *)
- constructor. assumption. assumption. assumption. assumption.
- constructor; auto.
- constructor; auto.
- (* Now the tree gets bigger, and the proof gets more complicated. *)
constructor; auto.
+ simpl in ×. repeat split.
(* The intro pattern ? means to let Coq choose the name. *)
destruct PR as [? _]. lia.
+ simpl in ×. repeat split.
× inv BR. simpl in ×. destruct H5 as [? _]. lia.
× inv BR. simpl in ×. destruct H5 as [_ [? _]]. auto.
× inv BR. simpl in ×. destruct H5 as [_ [_ ?]]. auto.
+ constructor; auto.
+ inv BR. inv H7. constructor; auto.
- constructor; auto.
- (* 53 cases remain. This could go on for a while... *)
Abort.
Let's use some of what we discovered above to automate.
Whenever we have a subgoal of the form
ForallT _ (T _ _ _ _ _) we can split it. Whenever we have a hypothesis of the form
BST (T _ _ _ _ _) we can invert it. And with a hypothesis
ForallT _ (T _ _ _ _ _) we can simplify then destruct it. Actually, the simplification is optional -- Coq will do the destruct without needing the simplification. Anything else seems able to be finished with constructor, auto, and lia. Let's see how far that can take us...
ForallT _ (T _ _ _ _ _) we can split it. Whenever we have a hypothesis of the form
BST (T _ _ _ _ _) we can invert it. And with a hypothesis
ForallT _ (T _ _ _ _ _) we can simplify then destruct it. Actually, the simplification is optional -- Coq will do the destruct without needing the simplification. Anything else seems able to be finished with constructor, auto, and lia. Let's see how far that can take us...
Lemma balance_BST: ∀ (V : Type) (c : color) (l : tree V) (k : key)
(v : V) (r : tree V),
ForallT (fun k' _ ⇒ (Abs k') < (Abs k)) l →
ForallT (fun k' _ ⇒ (Abs k') > (Abs k)) r →
BST l →
BST r →
BST (balance c l k v r).
Proof.
intros. unfold balance.
repeat
match goal with
| H: ForallT _ (T _ _ _ _ _) ⊢ _ ⇒ destruct H as [? [? ?] ]
| H: BST (T _ _ _ _ _) ⊢ _ ⇒ inv H
| ⊢ BST (T _ _ _ _ _) ⇒ constructor
| ⊢ BST (match ?c with Red ⇒ _ | Black ⇒ _ end) ⇒ destruct c
| ⊢ BST (match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end) ⇒ destruct t
| ⊢ ForallT _ (T _ _ _ _ _) ⇒ repeat split
end;
auto; try lia.
(v : V) (r : tree V),
ForallT (fun k' _ ⇒ (Abs k') < (Abs k)) l →
ForallT (fun k' _ ⇒ (Abs k') > (Abs k)) r →
BST l →
BST r →
BST (balance c l k v r).
Proof.
intros. unfold balance.
repeat
match goal with
| H: ForallT _ (T _ _ _ _ _) ⊢ _ ⇒ destruct H as [? [? ?] ]
| H: BST (T _ _ _ _ _) ⊢ _ ⇒ inv H
| ⊢ BST (T _ _ _ _ _) ⇒ constructor
| ⊢ BST (match ?c with Red ⇒ _ | Black ⇒ _ end) ⇒ destruct c
| ⊢ BST (match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end) ⇒ destruct t
| ⊢ ForallT _ (T _ _ _ _ _) ⇒ repeat split
end;
auto; try lia.
41 cases remain. It's a little disappointing that we didn't clear
more of them. Let's look at why are we stuck.
All the remaining subgoals appear to be about proving an inequality
over all the nodes of a subtree. For example, the first subgoal
follows from the hypotheses:
ForallT (fun (k' : int) (_ : V) ⇒ Abs k' > Abs k0) r2
Abs k1 < Abs k0 The other goals look similar.
ForallT (fun (k' : int) (_ : V) ⇒ Abs k' > Abs k0) r2
Abs k1 < Abs k0 The other goals look similar.
Abort.
To make progress, we can set up some helper lemmas.
Lemma ForallT_imp : ∀ (V : Type) (P Q : int → V → Prop) t,
ForallT P t →
(∀ k v, P k v → Q k v) →
ForallT Q t.
Proof.
induction t; intros.
- auto.
- destruct H as [? [? ?]]. repeat split; auto.
Qed.
Lemma ForallT_greater : ∀ (V : Type) (t : tree V) (k k0 : key),
ForallT (fun k' _ ⇒ Abs k' > Abs k) t →
Abs k > Abs k0 →
ForallT (fun k' _ ⇒ Abs k' > Abs k0) t.
Proof.
intros. eapply ForallT_imp; eauto.
intros. simpl in H1. lia.
Qed.
Lemma ForallT_less : ∀ (V : Type) (t : tree V) (k k0 : key),
ForallT (fun k' _ ⇒ Abs k' < Abs k) t →
Abs k < Abs k0 →
ForallT (fun k' _ ⇒ Abs k' < Abs k0) t.
Proof.
intros; eapply ForallT_imp; eauto.
intros. simpl in H1. lia.
Qed.
ForallT P t →
(∀ k v, P k v → Q k v) →
ForallT Q t.
Proof.
induction t; intros.
- auto.
- destruct H as [? [? ?]]. repeat split; auto.
Qed.
Lemma ForallT_greater : ∀ (V : Type) (t : tree V) (k k0 : key),
ForallT (fun k' _ ⇒ Abs k' > Abs k) t →
Abs k > Abs k0 →
ForallT (fun k' _ ⇒ Abs k' > Abs k0) t.
Proof.
intros. eapply ForallT_imp; eauto.
intros. simpl in H1. lia.
Qed.
Lemma ForallT_less : ∀ (V : Type) (t : tree V) (k k0 : key),
ForallT (fun k' _ ⇒ Abs k' < Abs k) t →
Abs k < Abs k0 →
ForallT (fun k' _ ⇒ Abs k' < Abs k0) t.
Proof.
intros; eapply ForallT_imp; eauto.
intros. simpl in H1. lia.
Qed.
Now we can return to automating the proof.
Lemma balance_BST: ∀ (V : Type) (c : color) (l : tree V) (k : key)
(v : V) (r : tree V),
ForallT (fun k' _ ⇒ (Abs k') < (Abs k)) l →
ForallT (fun k' _ ⇒ (Abs k') > (Abs k)) r →
BST l →
BST r →
BST (balance c l k v r).
Proof.
intros. unfold balance.
repeat
match goal with
| H: ForallT _ (T _ _ _ _ _) ⊢ _ ⇒ destruct H as [? [? ?] ]
| H: BST (T _ _ _ _ _) ⊢ _ ⇒ inv H
| ⊢ BST (T _ _ _ _ _) ⇒ constructor
| ⊢ BST (match ?c with Red ⇒ _ | Black ⇒ _ end) ⇒ destruct c
| ⊢ BST (match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end) ⇒ destruct t
| ⊢ ForallT _ (T _ _ _ _ _) ⇒ repeat split
end;
auto; try lia.
(* all: t applies t to every subgoal. *)
all: try eapply ForallT_greater; try eapply ForallT_less; eauto; try lia.
Qed.
(v : V) (r : tree V),
ForallT (fun k' _ ⇒ (Abs k') < (Abs k)) l →
ForallT (fun k' _ ⇒ (Abs k') > (Abs k)) r →
BST l →
BST r →
BST (balance c l k v r).
Proof.
intros. unfold balance.
repeat
match goal with
| H: ForallT _ (T _ _ _ _ _) ⊢ _ ⇒ destruct H as [? [? ?] ]
| H: BST (T _ _ _ _ _) ⊢ _ ⇒ inv H
| ⊢ BST (T _ _ _ _ _) ⇒ constructor
| ⊢ BST (match ?c with Red ⇒ _ | Black ⇒ _ end) ⇒ destruct c
| ⊢ BST (match ?t with E ⇒ _ | T _ _ _ _ _ ⇒ _ end) ⇒ destruct t
| ⊢ ForallT _ (T _ _ _ _ _) ⇒ repeat split
end;
auto; try lia.
(* all: t applies t to every subgoal. *)
all: try eapply ForallT_greater; try eapply ForallT_less; eauto; try lia.
Qed.
Exercise: 2 stars, standard (balanceP)
Lemma balanceP : ∀ (V : Type) (P : key → V → Prop) (c : color) (l r : tree V)
(k : key) (v : V),
ForallT P l →
ForallT P r →
P k v →
ForallT P (balance c l k v r).
Proof.
(* FILL IN HERE *) Admitted.
☐
(k : key) (v : V),
ForallT P l →
ForallT P r →
P k v →
ForallT P (balance c l k v r).
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, standard (insP)
Lemma insP : ∀ (V : Type) (P : key → V → Prop) (t : tree V) (k : key) (v : V),
ForallT P t →
P k v →
ForallT P (ins k v t).
Proof.
(* FILL IN HERE *) Admitted.
☐
ForallT P t →
P k v →
ForallT P (ins k v t).
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 3 stars, standard (ins_BST)
Lemma ins_BST : ∀ (V : Type) (t : tree V) (k : key) (v : V),
BST t →
BST (ins k v t).
Proof.
(* FILL IN HERE *) Admitted.
☐
BST t →
BST (ins k v t).
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, standard (insert_BST)
Theorem insert_BST : ∀ (V : Type) (t : tree V) (v : V) (k : key),
BST t →
BST (insert k v t).
Proof.
(* FILL IN HERE *) Admitted.
☐
BST t →
BST (insert k v t).
Proof.
(* FILL IN HERE *) Admitted.
☐
Verification
lookup d k empty_tree = d
lookup d k (insert k v t) = v
lookup d k' (insert k v t) = lookup d k' t if k ≠ k'
Lemma lookup_empty : ∀ (V : Type) (d : V) (k : key),
lookup d k (@empty_tree V) = d.
Proof. auto. Qed.
lookup d k (@empty_tree V) = d.
Proof. auto. Qed.
The next two equations are more challenging because of balance.
Prove that balance preserves the result of lookup on non-empty
trees. Use the same proof technique as in balance_BST.
Exercise: 4 stars, standard (balance_lookup)
Lemma balance_lookup: ∀ (V : Type) (d : V) (c : color) (k k' : key) (v : V)
(l r : tree V),
BST l →
BST r →
ForallT (fun k' _ ⇒ Abs k' < Abs k) l →
ForallT (fun k' _ ⇒ Abs k' > Abs k) r →
lookup d k' (balance c l k v r) =
if Abs k' <? Abs k
then lookup d k' l
else if Abs k' >? Abs k
then lookup d k' r
else v.
Proof.
(* FILL IN HERE *) Admitted.
☐
(l r : tree V),
BST l →
BST r →
ForallT (fun k' _ ⇒ Abs k' < Abs k) l →
ForallT (fun k' _ ⇒ Abs k' > Abs k) r →
lookup d k' (balance c l k v r) =
if Abs k' <? Abs k
then lookup d k' l
else if Abs k' >? Abs k
then lookup d k' r
else v.
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 3 stars, standard (lookup_ins_eq)
Lemma lookup_ins_eq: ∀ (V : Type) (d : V) (t : tree V) (k : key) (v : V),
BST t →
lookup d k (ins k v t) = v.
Proof.
(* FILL IN HERE *) Admitted.
☐
BST t →
lookup d k (ins k v t) = v.
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 3 stars, standard (lookup_ins_neq)
Theorem lookup_ins_neq: ∀ (V : Type) (d : V) (t : tree V) (k k' : key)
(v : V),
BST t →
k ≠ k' →
lookup d k' (ins k v t) = lookup d k' t.
Proof.
(* FILL IN HERE *) Admitted.
☐
(v : V),
BST t →
k ≠ k' →
lookup d k' (ins k v t) = lookup d k' t.
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, standard (lookup_insert)
Theorem lookup_insert_eq : ∀ (V : Type) (d : V) (t : tree V) (k : key)
(v : V),
BST t →
lookup d k (insert k v t) = v.
Proof.
(* FILL IN HERE *) Admitted.
Theorem lookup_insert_neq: ∀ (V : Type) (d : V) (t : tree V) (k k' : key)
(v : V),
BST t →
k ≠ k' →
lookup d k' (insert k v t) = lookup d k' t.
Proof.
(* FILL IN HERE *) Admitted.
☐
(v : V),
BST t →
lookup d k (insert k v t) = v.
Proof.
(* FILL IN HERE *) Admitted.
Theorem lookup_insert_neq: ∀ (V : Type) (d : V) (t : tree V) (k k' : key)
(v : V),
BST t →
k ≠ k' →
lookup d k' (insert k v t) = lookup d k' t.
Proof.
(* FILL IN HERE *) Admitted.
☐
Check empty_tree_BST :
∀ (V : Type),
BST (@empty_tree V).
Check insert_BST :
∀ (V : Type) (t : tree V) (v : V) (k : key),
BST t → BST (insert k v t).
Check lookup_empty :
∀ (V : Type) (d : V) (k : key),
lookup d k (@empty_tree V) = d.
Check lookup_insert_eq :
∀ (V : Type) (d : V) (t : tree V) (k : key) (v : V),
BST t → lookup d k (insert k v t) = v.
Check lookup_insert_neq :
∀ (V : Type) (d : V) (t : tree V) (k k' : key) (v : V),
BST t →
k ≠ k' →
lookup d k' (insert k v t) = lookup d k' t.
∀ (V : Type),
BST (@empty_tree V).
Check insert_BST :
∀ (V : Type) (t : tree V) (v : V) (k : key),
BST t → BST (insert k v t).
Check lookup_empty :
∀ (V : Type) (d : V) (k : key),
lookup d k (@empty_tree V) = d.
Check lookup_insert_eq :
∀ (V : Type) (d : V) (t : tree V) (k : key) (v : V),
BST t → lookup d k (insert k v t) = v.
Check lookup_insert_neq :
∀ (V : Type) (d : V) (t : tree V) (k k' : key) (v : V),
BST t →
k ≠ k' →
lookup d k' (insert k v t) = lookup d k' t.
We could now proceed to reprove all the facts about elements
that we developed in SearchTree. But since elements does
not not pay attention to colors, and does not rebalance the tree,
these proofs should be a simple copy-paste from that chapter, with
only minor edits. This would be an uninteresting exercise, so we
don't pursue it here.
Efficiency
- Local Invariant: No red node has a red child.
- Global Invariant: Every path from the root to a leaf has the same number of black nodes.
Inductive RB {V : Type} : tree V → color → nat → Prop :=
| RB_leaf: ∀ (c : color), RB E c 0
| RB_r: ∀ (l r : tree V) (k : key) (v : V) (n : nat),
RB l Red n →
RB r Red n →
RB (T Red l k v r) Black n
| RB_b: ∀ (c : color) (l r : tree V) (k : key) (v : V) (n : nat),
RB l Black n →
RB r Black n →
RB (T Black l k v r) c (S n).
| RB_leaf: ∀ (c : color), RB E c 0
| RB_r: ∀ (l r : tree V) (k : key) (v : V) (n : nat),
RB l Red n →
RB r Red n →
RB (T Red l k v r) Black n
| RB_b: ∀ (c : color) (l r : tree V) (k : key) (v : V) (n : nat),
RB l Black n →
RB r Black n →
RB (T Black l k v r) c (S n).
Exercise: 1 star, standard (RB_blacken_parent)
Lemma RB_blacken_parent : ∀ (V : Type) (t : tree V) (n : nat),
RB t Red n → RB t Black n.
Proof.
(* FILL IN HERE *) Admitted.
☐
RB t Red n → RB t Black n.
Proof.
(* FILL IN HERE *) Admitted.
☐
Inductive NearlyRB {V : Type} : tree V → nat → Prop :=
| NearlyRB_r : ∀ (l r : tree V) (k : key) (v : V) (n : nat),
RB l Black n →
RB r Black n →
NearlyRB (T Red l k v r) n
| NearlyRB_b : ∀ (l r : tree V) (k : key) (v : V) (n : nat),
RB l Black n →
RB r Black n →
NearlyRB (T Black l k v r) (S n).
| NearlyRB_r : ∀ (l r : tree V) (k : key) (v : V) (n : nat),
RB l Black n →
RB r Black n →
NearlyRB (T Red l k v r) n
| NearlyRB_b : ∀ (l r : tree V) (k : key) (v : V) (n : nat),
RB l Black n →
RB r Black n →
NearlyRB (T Black l k v r) (S n).
Exercise: 4 stars, standard (ins_RB)
Ltac prove_RB := admit.
Lemma ins_RB : ∀ (V : Type) (k : key) (v : V) (t : tree V) (n : nat),
(RB t Black n → NearlyRB (ins k v t) n) ∧
(RB t Red n → RB (ins k v t) Black n).
Proof.
induction t; split; intros; inv H; repeat constructor; simpl.
- (* Instantiate the inductive hypotheses. *)
specialize (IHt1 n). specialize (IHt2 n).
(* Derive what propositional facts we can from the hypotheses. *)
intuition.
(* Get rid of some extraneous hypotheses. *)
clear H H1.
(* Finish with automation. *)
prove_RB.
- specialize (IHt1 n0). specialize (IHt2 n0). intuition.
clear H0 H2.
prove_RB.
- specialize (IHt1 n0). specialize (IHt2 n0). intuition.
clear H0 H2.
prove_RB.
(* There's nothing more you need to fill in here. Just don't
forget to change the Admitted. to Qed. when you have
finished developing prove_RB. *)
(* FILL IN HERE *) Admitted.
☐
Lemma ins_RB : ∀ (V : Type) (k : key) (v : V) (t : tree V) (n : nat),
(RB t Black n → NearlyRB (ins k v t) n) ∧
(RB t Red n → RB (ins k v t) Black n).
Proof.
induction t; split; intros; inv H; repeat constructor; simpl.
- (* Instantiate the inductive hypotheses. *)
specialize (IHt1 n). specialize (IHt2 n).
(* Derive what propositional facts we can from the hypotheses. *)
intuition.
(* Get rid of some extraneous hypotheses. *)
clear H H1.
(* Finish with automation. *)
prove_RB.
- specialize (IHt1 n0). specialize (IHt2 n0). intuition.
clear H0 H2.
prove_RB.
- specialize (IHt1 n0). specialize (IHt2 n0). intuition.
clear H0 H2.
prove_RB.
(* There's nothing more you need to fill in here. Just don't
forget to change the Admitted. to Qed. when you have
finished developing prove_RB. *)
(* FILL IN HERE *) Admitted.
☐
Corollary ins_red : ∀ (V : Type) (t : tree V) (k : key) (v : V) (n : nat),
RB t Red n → RB (ins k v t) Black n.
Proof.
intros. apply ins_RB. assumption.
Qed.
RB t Red n → RB (ins k v t) Black n.
Proof.
intros. apply ins_RB. assumption.
Qed.
Exercise: 1 star, standard (RB_blacken_root)
Lemma RB_blacken_root : ∀ (V : Type) (t : tree V) (n : nat),
RB t Black n →
∃ (n' : nat), RB (make_black t) Red n'.
Proof.
(* FILL IN HERE *) Admitted.
☐
RB t Black n →
∃ (n' : nat), RB (make_black t) Red n'.
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 1 star, standard (insert_RB)
Lemma insert_RB : ∀ (V : Type) (t : tree V) (k : key) (v : V) (n : nat),
RB t Red n →
∃ (n' : nat), RB (insert k v t) Red n'.
Proof.
(* FILL IN HERE *) Admitted.
☐
RB t Red n →
∃ (n' : nat), RB (insert k v t) Red n'.
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 4 stars, advanced (redblack_bound)
- The standard library has min and max functions for nat.
- Note that RB does not require the root to be Black.
- Prove two auxiliary lemmas, one about an upper bound on the
number of black nodes in a path, and another about a lower
bound. Combine those lemmas to prove the main theorem.
- All of the proofs can be quite short. The challenge is to invent helpful lemmas.
Fixpoint height {V : Type} (t : tree V) : nat
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Fixpoint mindepth {V : Type} (t : tree V) : nat
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Lemma redblack_balanced : ∀ (V : Type) (t : tree V) (c : color) (n : nat),
RB t c n →
(height t ≤ 2 × mindepth t + 1)%nat.
Proof.
(* FILL IN HERE *) Admitted.
(* Do not modify the following line: *)
Definition manual_grade_for_redblack_bound : option (nat×string) := None.
☐
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Fixpoint mindepth {V : Type} (t : tree V) : nat
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Lemma redblack_balanced : ∀ (V : Type) (t : tree V) (c : color) (n : nat),
RB t c n →
(height t ≤ 2 × mindepth t + 1)%nat.
Proof.
(* FILL IN HERE *) Admitted.
(* Do not modify the following line: *)
Definition manual_grade_for_redblack_bound : option (nat×string) := None.
☐
Extraction "redblack.ml" empty_tree insert lookup elements.
Run it in the OCaml top level with these commands:
On a recent machine with a 2.9 GHz Intel Core i9 that prints:
That execution uses the bytecode interpreter. The native compiler
will have better performance:
On the same machine that prints,
The benchmark measurements above (and in Extract)
demonstrate the following:
#use "redblack.ml";; #use "test_searchtree.ml";;
Insert and lookup 1000000 random integers in 0.860663 seconds. Insert and lookup 20000 random integers in 0.007908 seconds. Insert and lookup 20000 consecutive integers in 0.004668 seconds.
$ ocamlopt -c redblack.mli redblack.ml $ ocamlopt redblack.cmx -open Redblack test_searchtree.ml -o test_redblack $ ./test_redblack
Insert and lookup 1000000 random integers in 0.475669 seconds. Insert and lookup 20000 random integers in 0.00312 seconds. Insert and lookup 20000 consecutive integers in 0.001183 seconds.
- On random insertions, red-black trees are about the same as
ordinary BSTs.
- On consecutive insertions, red-black trees are much faster
than ordinary BSTs.
- Red-black trees are about as fast on consecutive insertions as on random.
(* 2024-11-04 20:41 *)