Verif_hashCorrectness proof of hash.c

In this chapter we will prove that the C program, hash.c, correctly implements the functional model in hashfun.v. That proof, composed with the proof in hashfun.v that the functional model behaves correctly as a key-value map with string keys, demonstrates the correct behavior of hash.c.

The usual boilerplate

Require VC.Preface. (* Check for the right version of VST *)
Require Import VST.floyd.proofauto.
Require Import VST.floyd.library.
Require Import VC.hash.
#[export] Instance CompSpecs : compspecs. make_compspecs prog. Defined.
Definition Vprog : varspecs. mk_varspecs prog. Defined.
Require Import VC.hints. (* Import special hints for this tutorial. *)
Now we import some VST libraries that don't come standard with VST.floyd.proofauto.
Require Import VST.msl.wand_frame.
Require Import VST.msl.iter_sepcon.
Require Import VST.floyd.reassoc_seq.
Require Import VST.floyd.field_at_wand.
Now we import the functional model.
Require Import VC.Hashfun.

Function specifications

Imports from the C string library (see Verif_strlib)

Definition strcmp_spec :=
 DECLARE _strcmp
  WITH str1 : val, s1 : list byte, str2 : val, s2 : list byte
  PRE [ tptr tschar, tptr tschar ]
    PROP ()
    PARAMS (str1; str2)
    SEP (cstring Ews s1 str1; cstring Ews s2 str2)
  POST [ tint ]
   EX i : int,
    PROP (if Int.eq_dec i Int.zero then s1 = s2 else s1 s2)
    RETURN (Vint i)
    SEP (cstring Ews s1 str1; cstring Ews s2 str2).

Definition strcpy_spec :=
 DECLARE _strcpy
  WITH dest : val, n : Z, src : val, s : list byte
  PRE [ tptr tschar, tptr tschar ]
    PROP (Zlength s < n)
    PARAMS (dest; src)
    SEP (data_at_ Ews (tarray tschar n) dest; cstring Ews s src)
  POST [ tptr tschar ]
    PROP ()
    RETURN (dest)
    SEP (cstringn Ews s n dest; cstring Ews s src).

Definition strlen_spec :=
 DECLARE _strlen
  WITH s : list byte, str: val
  PRE [ tptr tschar ]
    PROP ( )
    PARAMS (str)
    SEP (cstring Ews s str)
  POST [ size_t ]
    PROP ()
    RETURN (Vptrofs (Ptrofs.repr (Zlength s)))
    SEP (cstring Ews s str).

String functions: copy, hash

Definition copy_string_spec : ident × funspec :=
 DECLARE _copy_string
 WITH s: val, sigma : list byte, gv: globals
 PRE [ tptr tschar ]
    PROP ()
    PARAMS (s) GLOBALS(gv)
    SEP (cstring Ews sigma s; mem_mgr gv)
 POST [ tptr tschar ]
    EX p: val,
      PROP ( ) RETURN (p)
      SEP (cstring Ews sigma s;
           cstring Ews sigma p;
           malloc_token Ews (tarray tschar (Zlength sigma + 1)) p;
           mem_mgr gv).

Definition hash_spec : ident × funspec :=
  DECLARE _hash
  WITH s: val, contents : list byte
  PRE [ tptr tschar ]
          PROP ()
          PARAMS (s)
          SEP (cstring Ews contents s)
  POST [ tuint ]
        PROP ()
        RETURN (Vint (Int.repr (hashfun contents)))
        SEP (cstring Ews contents s).

Data structures for hash table

Some abbreviations for C struct types that we use frequently
Definition tcell := Tstruct _cell noattr.
Definition thashtable := Tstruct _hashtable noattr.
A list_cell has four parts:
  • a linked list cons cell with a key-pointer kp, integer count, and pointer to the next element of the linked list;
  • the key-pointer points to a string (null-terminated array of char) containing the key;
  • the cons cell was obtained by malloc, and must be freeable by free, and so there's a malloc_token giving that capability;
  • the key-string also has a malloc-token so that it can be freed
Definition list_cell (key: list byte) (count: Z) (next: val) (p: val): mpred :=
 EX kp: val, cstring Ews key kp
             × malloc_token Ews (tarray tschar (Zlength key + 1)) kp
             × data_at Ews tcell (kp,(Vint (Int.repr count), next)) p
             × malloc_token Ews tcell p.

Definition list_cell_local_facts:
   key count next p, list_cell key count next p |-- !! isptr p.
Proof. intros. unfold list_cell. Intros kp. entailer!. Qed.
#[export] Hint Resolve list_cell_local_facts: saturate_local.

Definition list_cell_valid_pointer:
   key count next p, list_cell key count next p |-- valid_pointer p.
Proof. intros. unfold list_cell. Intros kp. entailer!. Qed.
#[export] Hint Resolve list_cell_valid_pointer: valid_pointer.

Exercise: 1 star, standard (listcell_fold)

Lemma listcell_fold: key kp count p' p,
    cstring Ews key kp
    × malloc_token Ews (tarray tschar (Zlength key + 1)) kp
    × data_at Ews tcell (kp, (Vint (Int.repr count), p')) p
    × malloc_token Ews tcell p
         |-- list_cell key count p' p.
Proof.
(* FILL IN HERE *) Admitted.
Fixpoint listrep (sigma: list (list byte × Z)) (x: val) : mpred :=
 match sigma with
 | (s,c)::hsEX y: val, list_cell s c y x × listrep hs y
 | nil
    !! (x = nullval) && emp
 end.

Exercise: 2 stars, standard (listrep_hints)

Lemma listrep_local_prop: sigma p, listrep sigma p |--
        !! (is_pointer_or_null p (p=nullval sigma=nil)).
Proof.
(* FILL IN HERE *) Admitted.
#[export] Hint Resolve listrep_local_prop : saturate_local.

Lemma listrep_valid_pointer:
   sigma p,
   listrep sigma p |-- valid_pointer p.
Proof.
(* FILL IN HERE *) Admitted.
#[export] Hint Resolve listrep_valid_pointer : valid_pointer.
Lemma listrep_fold: key count p' p al,
  list_cell key count p' p × listrep al p' |-- listrep ((key,count)::al) p.
Proof. intros. simpl. Exists p'. cancel. Qed.
A listbox is a pointer to a pointer to a cons cell.
Definition listboxrep al r :=
 EX p:val, data_at Ews (tptr tcell) p r × listrep al p.

Definition uncurry {A B C} (f: A B C) (xy: A×B) : C :=
  f (fst xy) (snd xy).

Definition hashtable_rep (contents: hashtable_contents) (p: val) : mpred :=
  EX bl: list (list (list byte × Z) × val),
    !! (contents = map fst bl) &&
    malloc_token Ews thashtable p ×
    data_at Ews thashtable (map snd bl) p
    × iter_sepcon (uncurry listrep) bl.

Exercise: 2 stars, standard (hashtable_rep_hints)

Lemma hashtable_rep_local_facts: contents p,
 hashtable_rep contents p |-- !! (isptr p Zlength contents = N).
(* FILL IN HERE *) Admitted.
#[export] Hint Resolve hashtable_rep_local_facts : saturate_local.

Lemma hashtable_rep_valid_pointer: contents p,
 hashtable_rep contents p |-- valid_pointer p.
(* FILL IN HERE *) Admitted.
#[export] Hint Resolve hashtable_rep_valid_pointer : valid_pointer.

Function specifications for hash table

Definition new_table_spec : ident × funspec :=
 DECLARE _new_table
 WITH gv: globals
 PRE [ ]
   PROP()
   PARAMS() GLOBALS(gv)
   SEP(mem_mgr gv)
 POST [ tptr thashtable ]
   EX p:val, PROP()
      RETURN (p)
      SEP(hashtable_rep empty_table p; mem_mgr gv).

Definition new_cell_spec : ident × funspec :=
 DECLARE _new_cell
 WITH s: val, key: list byte, count: Z, next: val, gv: globals
 PRE [ tptr tschar, tint, tptr tcell ]
   PROP()
   PARAMS(s; Vint (Int.repr count); next) GLOBALS(gv)
   SEP(cstring Ews key s; mem_mgr gv)
 POST [ tptr tcell ]
   EX p:val, PROP()
      RETURN(p)
      SEP(list_cell key count next p; cstring Ews key s;
          mem_mgr gv).

Definition get_spec : ident × funspec :=
 DECLARE _get
 WITH p: val, contents: hashtable_contents, s: val, sigma : list byte
 PRE [ tptr (Tstruct _hashtable noattr), tptr tschar ]
    PROP ()
    PARAMS (p; s)
    SEP (hashtable_rep contents p; cstring Ews sigma s)
 POST [ tuint ]
    PROP ( )
    RETURN (Vint (Int.repr (hashtable_get sigma contents)))
    SEP (hashtable_rep contents p; cstring Ews sigma s).

Definition incr_list_spec : ident × funspec :=
 DECLARE _incr_list
 WITH r0: val, al: list (list byte × Z), s: val,
      sigma : list byte, gv: globals
 PRE [ tptr (tptr tcell), tptr tschar ]
    PROP (list_get sigma al < Int.max_unsigned)
    PARAMS (r0; s) GLOBALS(gv)
    SEP (listboxrep al r0; cstring Ews sigma s; mem_mgr gv)
 POST [ tvoid ]
      PROP ( ) RETURN ()
      SEP (listboxrep (list_incr sigma al) r0;
           cstring Ews sigma s; mem_mgr gv).

Definition incr_spec : ident × funspec :=
 DECLARE _incr
 WITH p: val, contents: hashtable_contents, s: val,
      sigma : list byte, gv: globals
 PRE [ tptr (Tstruct _hashtable noattr), tptr tschar ]
    PROP (hashtable_get sigma contents < Int.max_unsigned)
    PARAMS (p; s) GLOBALS(gv)
    SEP (hashtable_rep contents p; cstring Ews sigma s; mem_mgr gv)
 POST [ tvoid ]
      PROP ( ) RETURN ()
      SEP (hashtable_rep (hashtable_incr sigma contents) p;
           cstring Ews sigma s; mem_mgr gv).
Putting all the funspecs together
Definition Gprog : funspecs :=
        ltac:(with_library prog [
                   strcmp_spec; strcpy_spec; strlen_spec; hash_spec;
                   new_cell_spec; copy_string_spec; get_spec; incr_spec;
                   incr_list_spec
 ]).

Proofs of the functions hash, copy_string, new_cell

Before attempting to prove body_hash, do Verif_strlib at least through body_strlen.

Exercise: 3 stars, standard (body_hash)

Lemma body_hash: semax_body Vprog Gprog f_hash hash_spec.
Proof.
start_function.
unfold cstring in ×.
In the PROP part of your loop invariant, you'll want to maintain 0 i Zlength contents. In the LOCAL part of your loop invariant, try to use something like
    temp _c (Vbyte (Znth i (contents ++ [Byte.zero])) instead of
    temp _c (Znth i (map Vbyte (...))) The reason is that temp _c (Vint x) or temp _c (Vbyte y) is much easier for Floyd to handle than temp _c X where X is a general formula of type val.
Late in the proof of the loop body, the lemma hashfun_snoc will be useful.
(* FILL IN HERE *) Admitted.

Exercise: 3 stars, standard (body_copy_string)

Lemma body_copy_string: semax_body Vprog Gprog f_copy_string copy_string_spec.
Proof.
start_function.
assert_PROP (Zlength sigma + 1 Ptrofs.max_unsigned) by entailer!.
(* FILL IN HERE *) Admitted.

Exercise: 3 stars, standard (body_new_cell)

Lemma body_new_cell: semax_body Vprog Gprog f_new_cell new_cell_spec.
Proof.
(* FILL IN HERE *) Admitted.

Proof of the new_table function

Auxiliary lemmas about data-structure predicates

Exercise: 2 stars, standard (iter_sepcon_hints)

Lemma iter_sepcon_listrep_local_facts:
  bl, iter_sepcon (uncurry listrep) bl
                    |-- !! Forall is_pointer_or_null (map snd bl).
Proof.
(* Hint: use induction and sep_apply. *)
(* FILL IN HERE *) Admitted.

#[export] Hint Resolve iter_sepcon_listrep_local_facts : saturate_local.

Exercise: 2 stars, standard (iter_sepcon_split3)

Lemma iter_sepcon_split3:
   {A}{d: Inhabitant A} (i: Z) (al: list A) (f: A mpred),
   0 i < Zlength al
  (iter_sepcon f al =
   iter_sepcon f (sublist 0 i al) × f (Znth i al)
    × iter_sepcon f (sublist (i+1) (Zlength al) al))%logic.
Proof.
intros.
rewrite <- (sublist_same 0 (Zlength al) al) at 1 by auto.
(* Hint: rewrite (sublist_split LO MID HI) by lia, where you choose
    values for LO MID HI. 
  Also useful:  rewrite sublist_len_1    and    iter_sepcon_app.
  Finally, you'll have to use the associativity-commutativity of the "*" 
  operator: lemmas sepcon_emp, sepcon_assoc, sepcon_comm, etc. *)

(* FILL IN HERE *) Admitted.

Exercise: 2 stars, standard (body_new_table)

Lemma body_new_table_helper:
 (* This lemma is useful as the very last thing to do in body_new_table *)
  n,
  emp
  |-- iter_sepcon (uncurry listrep) (repeat ([], nullval) n).
(* FILL IN HERE *) Admitted.

Lemma body_new_table: semax_body Vprog Gprog f_new_table new_table_spec.
Proof.
The loop invariant in this function describes a partially initialized array. The best way to do that is with something like,
  data_at Ews thashtable
      (Zrepeat nullval i ++ Zrepeat Vundef (N-i)) p.
Then at some point you'll have to prove something about,
   data_at Ews thashtable
      (Zrepeat nullval (i + 1) ++ repeat Vundef (N - (i + 1))) p
In particular, you'll have to split up
   Zrepeat nullval (i + 1) into
   Zrepeat nullval i ++ Zrepeat nullval 1. The best way to do that is rewrite <- Zrepeat_app.
(* FILL IN HERE *) Admitted.

Proof of the get function

Exercise: 2 stars, standard (listrep_traverse)

Consider this loop in the get function:
  while (p) {
    if (strcmp(p->key, s)==0)
      return p->count;
    p=p->next;
  }
We will reason about linked-list traversal in separation logic using "Magic Wand as Frame" https://www.cs.princeton.edu/~appel/papers/wand-frame.pdf
When the loop is partway down the linked list, we can view the original list up to the current position as a "linked-list data structure with a hole"; and the current position points to a linked-list data structure that fills the hole. The "data-structure-with-a-hole" we reason about with separating implication, called "magic wand": (hole −∗ data-structure) which says, if you can conjoin this data-structure-with-a-hole with something-to-fill-the-hole, then you get the original data structure:
     hole × (hole −∗ data-structure) |-- data-structure Before the loop, we have a precondition such as,
   (listrep b0 p0; other_stuff) After a few loop iterations, we have a situation like,
   (listrep b p; (listrep b p −∗ listrep b0 p0); other_stuff) If the loop reaches p==NULL, then we have,
   (listrep nil nullval; (listrep nil nullval −∗ listrep b0 p0); other_stuff) The listrep_traverse_× lemmas in this exercise illustrate how to start a traversal, how to perform one iteration of the traversal, and how to finish a traversal.
Lemma listrep_traverse_start:
   p al,
    emp |-- listrep al p −∗ listrep al p.
(* FILL IN HERE *) Admitted.

Lemma listrep_traverse_step:
   al key count p' p,
  list_cell key count p' p |--
     listrep al p' −∗ listrep ((key, count) :: al) p.
(* FILL IN HERE *) Admitted.

Lemma listrep_traverse_step_example:
  kp key count al q p b0 p0,
    cstring Ews key kp ×
    (listrep ((key, count) :: al) p −∗ listrep b0 p0) ×
    malloc_token Ews (tarray tschar (Zlength key + 1)) kp ×
    data_at Ews tcell (kp, (Vint (Int.repr count), q)) p ×
    malloc_token Ews tcell p ×
    listrep al q
  |-- listrep b0 p0.
Proof.
intros.
Hint: use sep_apply with the lemmas listcell_fold, listrep_traverse_step, wand_frame_ver, modus_ponens_wand.
(* FILL IN HERE *) Admitted.

Lemma listrep_traverse_finish:
  al p,
   listrep nil nullval × (listrep nil nullval −∗ listrep al p)
  |-- listrep al p.
(* FILL IN HERE *) Admitted.

Exercise: 3 stars, standard (body_get)

Use the listrep_traverse_× lemmas as appropriate.
Lemma body_get: semax_body Vprog Gprog f_get get_spec.
Proof.
start_function.
rename p into table.
pose proof (hashfun_inrange sigma).

unfold abbreviate in MORE_COMMANDS; subst MORE_COMMANDS.
This next command would not be part of an ordinary Verifiable C proof, it is here only to guide you through the bigger proof.
apply seq_assoc1; assert_after 1
 (EX cts:list (list (list byte × Z) × val),
  PROP (contents = map fst cts )
  LOCAL (temp _h (Vint (Int.repr (hashfun sigma)));
         temp _table table; temp _s s)
  SEP (cstring Ews sigma s; malloc_token Ews thashtable table;
       data_at Ews thashtable (map snd cts) table;
       iter_sepcon (uncurry listrep) cts))%assert.
{
 (* FILL IN HERE *) admit.
}
Intros cts; subst contents.
forward.
deadvars!.

autorewrite with norm.
The previous line's autorewrite works only because of hypothesis H. If you clear H; autorewrite with norm you'll see that the Int.modu is not eliminated.
rewrite <- N_eq.
The purpose of this rewrite is to preserve a little bit of abstraction in the proofs. Because N_eq is in the rep_lia Hint database, the rep_lia tactic "knows" that N=109.
assert (0 hashfun sigma mod N < N).
It is useful to put facts like this above the line, to support rep_lia in reasoning about conversions between Z and Int.
  (* FILL IN HERE *) admit.
assert_PROP (Zlength cts = N) as H1.
Put equations like this above the line, to support list_solve, rep_lia, and other tactics such as entailer! that call them.
{
 (* FILL IN HERE *) admit.
}
forward.
Where did this proof goal come from? denote_tc_assert is a "type-checking assertion", that is, "prove that a C expression evaluates without crashing." In this case, the expression was tablebuckets[b], and we have to prove here that b is in bounds of the array, and that the b'th element of the array is, in fact, initialized.
The hypothesis H1 that you proved above is generally useful, and particularly in this proof right here.
 { (* FILL IN HERE *) admit.
 }
set (h := hashfun sigma mod N) in ×.
This next line would not be part of an ordinary Verifiable C proof, it is here only to guide you through the bigger proof.
eapply semax_pre; [ instantiate (1:=
  PROP ( ) LOCAL (temp _p (snd (Znth h cts)); temp _s s)
  SEP (cstring Ews sigma s; malloc_token Ews thashtable table;
       data_at Ews thashtable (map snd cts) table;
       iter_sepcon (uncurry listrep) (sublist 0 h cts);
        listrep (fst (Znth h cts)) (snd (Znth h cts));
       iter_sepcon (uncurry listrep) (sublist (h + 1) (Zlength cts) cts))) | ].
{ (* FILL IN HERE *) admit.
}

destruct (Znth h cts) as [b0 p0] eqn:Hbp0.
simpl.
We have reached the while-loop that will walk down the linked list. The pointer p0 is the pointer to the beginning of a list that represents the sequence b0. As the loop progresses, the loop variable p will move down the links, pointing to smaller sequences b.
We represent the list segment from p0 to p by a magic-wand formula: listrep b p −∗ listrep b0 p0. This means a heaplet (portion of memory) that, if you join it with a heaplet representing listrep b p, would represent the entire listrep b0 p0.
Several of our SEP conjuncts will not be needed until after the loop is done. We can hide them away in a single SEP-conjunct FRZL FR1 by doing this command:
freeze FR1 := (malloc_token _ _ table) (data_at _ _ _ table)
       (iter_sepcon _ _) (iter_sepcon _ _).
The freeze tactic "frames out" several conjuncts for a while, until later we thaw FR1.
forward_while
 (EX b: list (list byte × Z), EX p: val,
    PROP( (* FILL IN HERE the explanation of how b relates to b0.
          In particular, as you walk down the list past keys that
          don't match sigma, the result you would obtain by
          list_get sigma doesn't change. *)

          
        )
    LOCAL (temp _p p; temp _s s)
    SEP (FRZL FR1; cstring Ews sigma s
           (* FILL IN THE REST OF THE LOOP INVARIANT HERE!
             One of the conjuncts should be a magic-wand expression 
             describing a data structure with a hole;  the other conjuct
             describes what goes in the hole. *)

           
        )).
× (* Precondition implies loop invariant *)
(* FILL IN HERE *) admit.
× (* Loop test expression does not crash *)
(* FILL IN HERE *) admit.
× (* Loop body preserves loop invariant *)
 
As usual in a linked-list traversal, we want to dereference pkey but we don't have a data_at conjunct for p, we have only listrep b p. So we have to unfold the listrep; but this is useful only if we know that pnil. Therefore, case analysis:
destruct b as [ | [key count] al].
This case, where b=nil, is impossible, because (if you have the right loop invariant) certain information in the SEP clause of the precondition is inconsistent with HRE: isptr p above the line. To make use of propositional information in the SEP clause, use assert_PROP:
 {
   assert_PROP False. {
   (* FILL IN HERE *) admit.
   }
   contradiction.
 }
idtac.
The structure of the rest of this * bullet goes like this:
  • Massage the precondition and get through the forward_call to function strcmp.
  • Do forward_if (vretInt.zero). The argument you pass to forward_if can be a Prop, it does not need to be a full PROP/LOCAL/SEP, because:
    • One branch of the if never reaches the join point, it returns; and
    • The other branch of the if does not modify any local variables or memory, so the LOCAL and SEP parts of the assertion will be unchanged.
    • Sub-bullet: then-clause. At some point in this proof, you'll need to thaw FR1. You'll need to use iter_sepcon_split3. Near the end of the then-clause, you'll have a goal similar (perhaps not identical) to listrep_traverse_step_example.
    • Sub-bullet: else-clause. Fairly short and straightforward proof.
    • Sub-bullet: after the if; another proof goal similar to listrep_traverse_step_example.
(* FILL IN HERE *) admit.
× (* After the loop *)
  
Here, you still have a data structure with a hole, represented by (A −∗ B), and the thing-in-the-hole, represented by A. This is similar to listrep_traverse_finish.
  (* FILL IN HERE *) admit.
(* FILL IN HERE *) Admitted.

Proof of the incr_list function

Above, in the proof of the get function, we traverse a linked list without modifying it. The loop invariant looked like, listrep b p × (listrep b p −∗ listrep b0 p0).
But the incr_list function modifies a linked list, perhaps inserting a new element at the end. Furthermore, the C program's loop variable struct cell **r is a pointer to a pointer to a list cell. Our separation-logic description of this is listboxrep.
Print listboxrep. (* = fun (al : list (list byte * Z)) (r : val) =>
     EX p : val, data_at Ews (tptr tcell) p r * listrep al p   *)

That is, r is a single-word box containing pointer p, and p is a listrep. Let's examine the loop that we want to verify:
void incr_list (struct cell **r0, char *s) {
  struct cell *p, **r;
  for(r=r0; ; r=&p->next) {
    p = *r;
    if (!p) { *r = new_cell(s,1,NULL); return; }
    if (strcmp(p->key, s)==0) {p->count++; return;}
} }
We will describe variable r something like this:
  PROP() LOCAL(temp _r r) SEP(data_at Ews (tptr tcell) q r). That is, pointer to a single word containing q. But when we do r = &(pnext) we will have r pointing into the middle of a struct cell record, at the next field. To describe that single field all alone, we use unfold_data_at to split
  data_at Ews tcell (x,y,q) p into four separate conjuncts:
  field_at Ews tcell [StructField _key] x p ×
  field_at Ews tcell [StructField _count] y p ×
  spacer Ews (nested_field_offset tcell [StructField _count] + sizeof tuint)
                       (nested_field_offset tcell [StructField _next]) p ×
  field_at Ews tcell [StructField _next] q p
and then we must rewrite the last conjunct into
  data_at Ews (tptr tcell) q (field_address tcell [StructField _next] p) where the (field_address _ _ _) is an "address arithmetic" expression that describes the offset, in bytes, from p to &(pnext).
The "spacer" accounts for the padding between fields. This particular one, on a 32-bit-integer, 32-bit pointer configuration, simplifies down to emp. But on a 32-bit-integer, 64-bit pointer configuration, the spacer amounts to 4 bytes of Vundef-padding.
The listboxrep_traverse lemma illustrates the situation at the end of the loop body. Look at the left-hand side of the |-- entailment. Variable r points to a single word containing p (it is perhaps the _next field of the previous list cell). Variable p points to a split-up list cell, with fields _key and _count. Where is the _next field of p? We choose not to describe it in this heaplet!
The right-hand-side of this heaplet says, if you provide a heaplet satisfying listboxrep at address &pnext representing the sequence dl, then the combined heaplet satisfies listboxrep at address r representing the sequence (key,count)::dl. Furthermore, this is true for any sequence dl. That provides the freedom for the program to modify the contents of pnext, or of any _next field later in the sequence.

Exercise: 3 stars, standard (listboxrep_traverse)

Lemma listboxrep_traverse:
   p kp key count r,
     cstring Ews key kp ×
     malloc_token Ews (tarray tschar (Zlength key + 1)) kp ×
     field_at Ews tcell [StructField _key] kp p ×
     field_at Ews tcell [StructField _count] (Vint (Int.repr count)) p ×
     spacer Ews (nested_field_offset tcell [StructField _count] + sizeof tuint)
                       (nested_field_offset tcell [StructField _next]) p ×
     malloc_token Ews tcell p ×
     data_at Ews (tptr tcell) p r
   |--
     ALL dl: list (list byte × Z),
       listboxrep dl (field_address tcell [StructField _next] p)
       −∗ listboxrep ((key, count) :: dl) r.
Proof.
  intros.
  simpl spacer.
 apply allp_right; intro dl.
 applywand_sepcon_adjoint.
Sometime during the proof below, you will have data_at Ews tcell ... p that you want to expand into
       field_at Ews tcell [StructField _key] ... p
     × field_at Ews tcell [StructField _count] ... p
     × field_at Ews tcell [StructField _next] ... p].
You can do this with unfold_data_at (pattern) where pattern is something like (data_at _ _ _ p) indicating which SEP conjunct you want to expand.
After that, you will want to rewrite by field_at_data_at ...
Check (field_at_data_at Ews tcell [StructField _next]). (* =
  forall v p, 
       field_at Ews tcell StructField _next v p =
       data_at Ews (nested_field_type tcell StructField _next) v
         (field_address tcell StructField _next p). *)

Eval simpl in (nested_field_type tcell [StructField _next]).
  (* = tptr (Tstruct _cell noattr) *)

(* FILL IN HERE *) Admitted.
In a 32-bit configuration, where the spacer is equivalent to emp, this specialized version of listboxrep_traverse is useful.
Lemma listboxrep_traverse32:
   p kp key count r,
     Archi.ptr64 = false
     cstring Ews key kp ×
     malloc_token Ews (tarray tschar (Zlength key + 1)) kp ×
     field_at Ews tcell [StructField _key] kp p ×
     field_at Ews tcell [StructField _count] (Vint (Int.repr count)) p ×
     malloc_token Ews tcell p ×
     data_at Ews (tptr tcell) p r
   |--
     ALL dl: list (list byte × Z),
       listboxrep dl (field_address tcell [StructField _next] p)
       −∗ listboxrep ((key, count) :: dl) r.
Proof.
intros.
inv H; (* Solve the goal if we are in 64-bit mode *)
(* otherwise we are in 32-bit mode *)
(eapply derives_trans; [ | apply (listboxrep_traverse p kp key count r)];
 unfold spacer; simpl; cancel).
Qed.

Exercise: 4 stars, standard (body_incr_list)

Lemma body_incr_list: semax_body Vprog Gprog f_incr_list incr_list_spec.
Proof.
This proof uses "magic wand as frame" to traverse and update a (linked list) data structure. This pattern is a bit more complex than the wand-as-frame pattern used in body_get, which did not update the data structure. You will still use "data-structure-with-a-hole" and "what-is-in-the-hole"; but now the "data-structure-with-a-hole" must be able to accept the future hole-filler, not the one that is in the hole right now.
The key lemmas to use are, wand_refl_cancel_right, wand_frame_elim', and wand_frame_ver. When using wand_frame_ver, you will find listboxrep_traverse or listboxrep_traverse32 to be useful.
(* FILL IN HERE *) Admitted.

field_compatible

Let's discuss how to address individual fields of structs, or individual slots of arrays.
First, data_at sh (Tstruct _ _) is equivalent to the conjunction of individual field_at predicates for each of the fields. (Something similar holds for arrays.)
Lemma example_split_struct:
  p (x y z: val),
      data_at Ews tcell (x,(y,z)) p
   = (field_at Ews tcell [StructField _key] x p
     × field_at Ews tcell [StructField _count] y p
     × spacer Ews (nested_field_offset tcell [StructField _count] + sizeof tuint)
                       (nested_field_offset tcell [StructField _next]) p
      × field_at Ews tcell [StructField _next] z p)%logic.
Proof.
intros.
unfold_data_at (data_at _ _ _ p).
unfold spacer; simpl; rewrite ?sepcon_emp. (* This line needed in 32-bit mode, harmless in 64-bit mode *)
rewrite !sepcon_assoc.
reflexivity.
Qed.
Second, field_at sh t gfs z p is equivalent to data_at sh (tptr t) z (field_address t gfs p), that is, field_address is a way to describe the offset (in bytes) from the base of a struct to the address of a field of that struct (or similarly to an element of an array).
Lemma example_field_at_data_at:
  p (z: val),
   field_at Ews tcell [StructField _next] z p =
   data_at Ews (tptr tcell) z
    (field_address tcell [StructField _next] p).
Proof.
intros.
 rewrite field_at_data_at.
 reflexivity.
Qed.
The _next field of struct cell is the third field, after two integer fields. If there is no padding between those fields (which is the case here), then the distance from the base of the struct to the base of the _next field should be 2*sizeof(tint).
Lemma example_field_at_data_at':
  p (z: val),
   field_at Ews tcell [StructField _next] z p |--
   data_at Ews (tptr tcell) z
    (offset_val (2 × sizeof size_t) p).
Proof.
intros.
 rewrite field_at_data_at.
 unfold field_address.
 if_tac; simpl; auto.
 cancel.
 entailer!.
 destruct H0 as [H0 _].
 contradiction H0.
Qed.
But the converse does not hold:
Lemma example_field_at_data_at'':
  p (z: val),
   data_at Ews (tptr tcell) z
    (offset_val (2 × sizeof size_t) p)
 |-- field_at Ews tcell [StructField _next] z p.
Proof.
 intros.
 rewrite field_at_data_at.
 simpl.
 unfold field_address.
 rewrite if_true.
 simpl.
 cancel.
 (* Not provable! *)
Abort.
If we assume an extra premise, we can prove this, however:
Lemma example_field_at_data_at''':
  p (z: val),
  field_compatible tcell [StructField _next] p
   data_at Ews (tptr tcell) z
    (offset_val (2 × sizeof size_t) p)
 |-- field_at Ews tcell [StructField _next] z p.
Proof.
 intros.
 rewrite field_at_data_at.
 simpl.
 unfold field_address.
 rewrite if_true by assumption.
 simpl.
 cancel.
Qed.
Why is that? The answer is in the definition of field_address:
Print field_address. (* = 
   fun {cs : compspecs} (t : type) (gfs : list gfield) (p : val) =>
    if field_compatible_dec t gfs p 
    then offset_val (nested_field_offset t gfs) p 
    else Vundef *)

This says, if field_compatible t gfs p then the address of the field is (for example) offset_val (2 × sizeof tint) p, but if ¬ field_compatible t gfs p then the address is Vundef. That is, field_address t gfs p is defined only if the address p is compatible with t and gfs. What is field_compatible ?
Let p be a address, and let t be a C-language type. We might ask, is it legal to put an object of type t at address p? Not always! We require all these conditions:
  • isptr p: p must be a pointer value (Vptr), not an integer or undefined.
  • complete_legal_cosu_type t = true: t must be complete, e.g., if typedef struct foo ×t then there must be a definition for struct foo.
  • size_compatible t p: there must be at least sizeof t bytes before the maximum-possible address.
  • align_compatible t p: p must be an appropriate multiple of 2, of 4, or of 8 as necessary, so that each subfield of type t is appropriately aligned as required by the data type of that subfield.
  • legal_nested_field t gfs: If we ask, "is it legal to put an object of type t with field-path gfs at address p?" then we must also know that gfs is a possible field-path in type t. For example, StructField _count is a possible field-path for type tcell, but StructField _s is not-- there's no such field.
    We encapsulate all these properties of t, p, gfs in the predicate field_compatible:
Print field_compatible. (* = 
  fun {cs : compspecs} (t : type) (gfs : list gfield) (p : val) =>
  isptr p /\
  complete_legal_cosu_type t = true /\
  size_compatible t p /\
  align_compatible t p /\
  legal_nested_field t gfs  *)

_count is a field of struct cell
Goal (legal_nested_field tcell [StructField _count]).
compute; auto 10.
Qed.
_s is not a field of struct cell
Goal (~ legal_nested_field tcell [StructField _s]).
compute. intuition congruence.
Qed.
0 is a legal subscript of struct cell ×a[109]
Goal (legal_nested_field (tarray (tptr tcell) 109) [ArraySubsc 0]).
compute. intuition congruence.
Qed.
108 is a legal subscript of struct cell ×a[109]
Goal (legal_nested_field (tarray (tptr tcell) 109) [ArraySubsc 108]).
compute. intuition congruence.
Qed.
109 is not a legal subscript of struct cell ×a[109]
Goal (~ legal_nested_field (tarray (tptr tcell) 109) [ArraySubsc 109]).
compute. intuition congruence.
Qed.
Sometimes in the C language we want a pointer just at the end of an array. That is, given struct cell ×a[109] we want the pointer value &a[109] . This is legal, even though this slot of the array does not exist.
For this we want a variant of legal_nested_field that permits "just at the end":
Check legal_nested_field0. (* : type -> list gfield -> Prop *)
108 is an an addressible subscript of struct cell ×a[109]
Goal (legal_nested_field0 (tarray (tptr tcell) 109) [ArraySubsc 108]).
compute. intuition congruence.
Qed.
109 is an an addressible subscript of struct cell ×a[109]
Goal (legal_nested_field0 (tarray (tptr tcell) 109) [ArraySubsc 109]).
compute. intuition congruence.
Qed.
110 is not an addressible subscript of struct cell ×a[109]
Goal (~ legal_nested_field (tarray (tptr tcell) 109) [ArraySubsc 110]).
compute. intuition congruence.
Qed.
Based on these two notions,
  • legal_nested_field (loadable/storable field) and
  • legal_nested_field0 (addressible field),
we have, respectively field_compatible and field_compatible0.
Print field_compatible0. (* = 
  fun {cs : compspecs} (t : type) (gfs : list gfield) (p : val) =>
  isptr p /\
  complete_legal_cosu_type t = true /\
  size_compatible t p /\
  align_compatible t p /\
  legal_nested_field0 t gfs  *)

Where does field_compatible come from?

Let's look again at this lemma:
Check example_field_at_data_at'''. (* : forall p (z: val),
  field_compatible tcell StructField _next p ->
   data_at Ews (tptr tcell) z 
    (offset_val (2 * sizeof tint) p)
 |-- field_at Ews tcell StructField _next z p. *)

We can apply this lemma if field_compatible... is above the line. How can we get that hypothesis above the line? Often the entailer or entailer! does this automatically, deriving it from data_at or field_at facts in the SEP clause of your left-hand side.

Proof of the incr function

  void incr_list (struct cell **r0, char *s);

  void incr (struct hashtable *table, char *s) {
    unsigned int h = hash(s);
    unsigned int b = h % N;
    incr_list (& table->buckets[b], s);
  }
The difficult part here is the function-argument, & tablebuckets[b] . The precondition of the incr_list function requires just a single pointer-to-pointer-to-cell, but we have an entire array of 109 pointers-to-cell.
We start with table, a pointer to a struct containing one field that's an array of 109 elements. For calling incr_list, we need to split that into two separate data structures:
  • the single-element array at tablebuckets+b
  • all the rest of the data structure, including the other fields of struct hashtable (if there were any) and the elements 0..b-1 and b+1..108 of the array.
The wand_slice_array lemma can do this:
Check wand_slice_array.
(*  : forall (lo hi n : Z) (t : type) (sh : Share.t)
             (al : list (reptype t)) (p : val),
       0 <= lo <= hi ->
       hi <= n ->
       Zlength al = n ->
       data_at sh (tarray t n) al p =
       !! field_compatible (tarray t n)  p &&
       data_at sh (tarray t (hi - lo)) (sublist lo hi al)
         (field_address0 (tarray t n) ArraySubsc lo p) *
       array_with_hole sh t lo hi n al p.
*)

Here (array_with_hole sh t lo hi n al p) means
Print array_with_hole.
(*  : !! field_compatible (tarray t n)  p &&
      (ALL cl : list (reptype t) ,
         data_at sh (tarray t (hi - lo)) cl
           (field_address0 (tarray t n) ArraySubsc lo p) −∗
         data_at sh (tarray t n)
           (sublist 0 lo al' ++ cl ++ sublist hi n al') p)
*)

This says that data_at sh (tarray t n) al p can be split up into two pieces:
  • 1. the slice from index lo to index hi-1,
  • 2. everything else.
Later in the proof of body_incr, you need to handle the function-argument, & (tablebuckets[b]) , where variable _b has the value h. CompCert will calculate this as table + (sizeof int)*h, which is to say,
    offset_val (sizeof (tptr tcell) × h) table But we want to express that as [ field_address0 (tarray (tptr tcell) N) [ArraySubsc h] (field_address thashtable [StructField _buckets] table). ] As discussed above in the field_compatible section, to prove a field_address one must know that the address table is field-compatible with thashtable, and that the address tablebuckets is field-compatible with the ArraySubsc h field. That's all proved in the following lemma:
Lemma body_incr_field_address_lemma:
   (table: val) (h : Z),
  0 h < N
  field_compatible (tarray (tptr tcell) N) []
    (field_address thashtable [StructField _buckets] table)
  field_compatible (tptr tcell) []
    (field_address0 (tarray (tptr tcell) N)
       [ArraySubsc h]
       (field_address thashtable [StructField _buckets] table))
  offset_val (sizeof (tptr tcell) × h) table =
  field_address0 (tarray (tptr tcell) N) [ArraySubsc h]
    (field_address thashtable [StructField _buckets] table).
Proof.
  intros.
The Hint database allows auto with field_compatible to make use of the field_compatible facts above the line.
  rewrite field_address0_offset by auto with field_compatible.
  rewrite field_address_offset by auto with field_compatible.
  autorewrite with norm. auto.
Qed.
Hint: Examine this lemma, and how it's proved, and think about what it means.
Lemma data_at_thashtable_tarray:
  al table,
    data_at Ews thashtable al table
    |-- data_at Ews (tarray (tptr tcell) N) al
           (field_address thashtable [StructField _buckets] table).
Proof.
intros.
unfold_data_at (data_at _ _ _ table).
rewrite field_at_data_at.
simpl.
apply derives_refl.
Qed.

Exercise: 4 stars, standard (body_incr)

Lemma body_incr: semax_body Vprog Gprog f_incr incr_spec.
Proof.
start_function.
rename p into table.
rename H into Hmax.
assert_PROP (isptr table) as Htable by entailer!.
The next two lines would not be part of an ordinary Verifiable C proof; they are here only to guide you through the bigger proof.
subst MORE_COMMANDS; unfold abbreviate; match goal withsemax _ _ (Ssequence ?c1 (Ssequence ?c2 ?c3)) _apply (semax_unfold_seq (Ssequence (Ssequence c1 c2) c3)); [ reflexivity | ] end.
pose (j := EX cts: list (list (list byte × Z) × val), PROP (contents = map fst cts; 0 hashfun sigma mod N < N; Zlength cts = N) LOCAL (temp _b (Vint (Int.repr (hashfun sigma mod N))); temp _h (Vint (Int.repr (hashfun sigma))); temp _table table; temp _s s; gvars gv) SEP (cstring Ews sigma s; malloc_token Ews thashtable table; data_at Ews (tarray (tptr tcell) N) (map snd cts) (field_address thashtable [StructField _buckets] table); iter_sepcon (uncurry listrep) cts; mem_mgr gv)); apply semax_seq' with j; subst j; abbreviate_semax.
{
 (* FILL IN HERE *) admit.
 }

Intros cts.
subst contents.
unfold hashtable_get in Hmax.
rewrite Zlength_map, H1 in Hmax.
set (h := hashfun sigma mod N) in ×.
erewrite (wand_slice_array h (h+1) N _ (tptr tcell))
  by first [rep_lia | list_solve ].
For the remainder of the proof, here are some useful lemmas: sublist_len_1, sublist_same, sublist_map, data_at_singleton_array_eq, iter_sepcon_split3, iter_sepcon_app, sublist_split, field_at_data_at, wand_slice_array_tptr_tcell
(* FILL IN HERE *) Admitted.
(* 2024-12-27 01:34 *)